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1. Abstract  
Using surrogate models for learning or optimization creates a risk associated to the fitting error that must be 

accounted for. Conservative surrogates are metamodels designed to safely estimate the actual response of the 

system. In this work we use safety margins to generate conservative surrogates. Given a desired level of 

conservativeness (percentage of safe predictions), we propose the use of cross-validation for estimating the 

required safety margin. We also explore how multiple surrogates and cross-validation can be used to minimize the 

loss of accuracy inherent in conservative surrogates. The approach was tested on two algebraic examples for ten 

basic surrogates including different instances of kriging, polynomial response surface, radial basis neural networks 

and support vector regression surrogates. For these examples we found that cross-validation (i) is effective for 

selecting the safety margin; and (ii) allows us to select a surrogate with the best compromise between 

conservativeness and loss of accuracy. 

2. Keywords: Conservative surrogates, Cross-validation, Multiple surrogates, Safety margin. 

3. Introduction 
The use of surrogates for facilitating optimization and statistical analysis of computationally expensive 

simulations has become commonplace [1]-[4]. Sophisticated surrogates such as kriging [5], [6]; radial basis neural 

networks [7], [8]; and support vector regression [9], [10]; increasingly share place with the traditional polynomial 

response surface [11], [12]. Usually, surrogate models are fit to be unbiased, so that predictions are equally likely 

to be below and above the actual value of the response (i.e., the error expectation is zero). However, in many 

applications, we want to obtain approximations that are expected to be as close as possible but on the safe side of 

the actual response [13]-[16]. For example, in structural analysis, stress or strain values must not be 

underestimated in order to avoid failure. In this paper, when estimates are higher than the true response we call 

them conservative. Hence, conservative surrogates tend to overestimate the actual response; and as a consequence, 

there is a trade-off between accuracy and conservativeness. 

One of the most widely used methods for conservative estimation is to bias the prediction response by additive or 

multiplicative constants (termed safety margin and safety factors, respectively). The choice of the constant is often 

based on previous knowledge of the problem. However, for surrogate-based analysis, there is no established 

practice for choosing the safety margin. In their previous work [17], the authors explored and compared different 

alternatives to produce conservative predictions with surrogates. They found that safety margins and estimators 

based on the surrogate error distribution were comparable in performance, but the safety margin approach lacked a 

basis for selecting the magnitude of the margin. 

In this paper we propose the use of cross-validation for estimating the safety margin. For unbiased surrogates, there 

has been research pointing to the utility of cross-validation [18]-[20] for selecting the most accurate surrogate from 

several fitted models. Thus we also explore the use of cross-validation for selecting a surrogate with desired 

combination of safety and accuracy; since different surrogates may have different performance in terms of the 

tradeoff between conservativeness and accuracy. 

The rest of the paper is organized as follows. Section 4 reviews the basis of conservative prediction using safety 

margins. Section 5 introduces the proposed approach for designing the safety margins based on cross-validation. 

Sections 6 and 7 define the numerical experiments and presents results and discussion. Finally, the paper is closed 

by recapitulating salient points and concluding remarks. 
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4. Background 

4.1. Conservative Surrogates 

We denote by y  the response of a numerical simulator or function that is to be studied: 

 
( )
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where 1{ , , }Tdx x=x …  is a d -dimensional vector of input variables. 

Since the response ( )y x  is expensive to evaluate, we approximate it by a cheaper model ( )ŷ x  (surrogate model), 

based on (i) assumptions on the nature of ( )y x ; and (ii) on the observed values of ( )y x  at a set of points, called 

the design of experiment (DOE). 

A conservative surrogate, ( )Ĉy x , obtained by adding a safety margin, s , to an unbiased surrogate model, ( )ŷ x , 

is an empirical estimator of the type: 

 ( ) ( )ˆ ˆ  .Cy y s= +x x  (2) 

In this paper, when we check the accuracy of a conservative surrogate, we use the root mean square error ( RMSe ).  

 ( ) ( )( )
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The RMSe  is computed by Monte-Carlo integration at a large number of testp  test points
*
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 ˆ ˆ  ,Ci Ci i i ie y y y y s= − = − +  (5) 

where  Ĉiy  and iy  are values of the conservative prediction and actual simulation at the i-th test point, 

respectively. 

4.2. Cross-Validation 

Cross-validation is a process of estimating errors by constructing the surrogate without some of the points and 

calculating the errors at these left out points. The process is repeated with different sets of left-out points in order to 

get statistically significant estimates of errors. The process proceeds by dividing the set of p  data points into k  

subsets. The surrogate is fit to all subsets except one, and error is checked in the subset that was left out. This 

process is repeated for all subsets to produce a vector of cross-validation errors, XVe  (also known as the PRESS 

vector, where PRESS stands for prediction sum of squares). Figure 1 illustrates the cross-validation errors for a 

kriging surrogate. 

 

Figure 1: Cross-validation error at the fourth point of the DOE, 
4XVe , illustrated by fitting a kriging model (KRG) to 

5p =  data points of the function sin(x). 

                                                           
*
 We computed the actual errors using a Latin Hypercube design [24] of 10,000 points created by the MATLAB 

function lhsdesign [25] set with the “maxmin” option with 10 iterations. 
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For comparing surrogates based on the data only at the p  points of the design of experiment (DOE), we use 

cross-validation errors, XVe . The RMSe  is estimated from XVe : 

 
1

 .T
RMS XV XVPRESS

p
= e e  (6) 

Since RMSPRESS  is an estimator of RMSe , one possible way of using multiple surrogates is to select the model 

with best (i.e., smallest) RMSPRESS  value. We call such model the BestPRESS surrogate. See Appendix A for 

more details about surrogate selection based on cross-validation errors. 

When we add a safety margin to a predictor, we do not need to repeat the costly process of cross-validation to 

assess the new PRESS vector, because the vector of cross-validation errors associated with ( )Ĉy x , XVCe , is 

simply: 

  .XVC XV s= +e e  (7) 

And with that, the computation of PRESS for the conservative surrogate does not require any extra computation 

beyond the cross-validation errors of the unbiased surrogate. 

4.3. Percent Conservative Errors and Loss in Accuracy 

There are different measures of the conservativeness of an approximation including the average error or the 

maximum non-conservative error. Here we use the percentage of conservative errors (i.e. positive): 

 ( ) ( )ˆ% 100 C

D

c I y x y x dx = − ∫  (8) 

where, ( )I e  is the indicator function, which equals 1 if 0e >  and 0 otherwise. %c can be estimated by 

Monte-Carlo integration: 

 ( )
1

100
%  ,

ptest

i
test i

c I e
p =

≈ ∑  (9) 

Ideally, % 50%c = , when 0s = . 

As stated before, conservative estimators tend to overestimate the true values. As a consequence the accuracy of 

the surrogate is degraded. Figure 2 illustrates the effect of using a safety margin. It is easy to see that the reduction 

in non-conservative errors entails increasing the root mean square error ( RMSe ). 

 

Figure 2: Effects of adding a safety margin to a kriging model (KRG) for the ( )sin x  function fitted with five data 

points. Conservativeness comes at the price of loosing accuracy. 

We also define the relative loss in accuracy: 

 1 ,RMS
a

RMS ref

e
l

e
= −  (10) 
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where RMSe  is taken at a given target conservativeness; and RMS ref
e  is the RMSe  value of reference. In the first 

part of the study, we use as reference the value of RMSe  when the target conservativeness is 50%. In the second 

part, when we compare the set of surrogates, we use as reference the RMSe  of the most accurate surrogate when no 

safety margin is added. 

5. Selecting Safety Margin using Cross-Validation 

In terms of the cumulative distribution function (CDF) of the errors, ( )( )F e x , the safety margin for a given 

conservativeness, %c , is given as: 

 1 %
.

100

c
s F−

 =    
 (11) 

According to (9), the value of the safety margin is such that it makes a desired percentage of the errors to become 

conservative. Figure 3 illustrates this concept. Figure 3-(a) shows how adding a safety margin makes the surrogate 

being more conservative. Figure 3-(b) demonstrates how safety margin and errors are related. 
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(a) Two-dimensional visualization. (b) Conservativeness and errors. 

Figure 3: Illustration of relationship between safety margin and error. Safety margin makes the predictor to achieve a 

desired conservativeness. Figure 3-(a): in white, area where error is conservative (positive) for a two-dimensional 

example. Percent conservativeness calculated by integration. Figure 3-(b): how percent conservativeness  is obtained 

from a vector of errors. 

Besides estimating the RMSe  using (6), in this work, we also propose using cross-validation to estimate the 

required safety margin, s . This is done by using in (9) the vector of cross-validation errors XVCe .Then in (11), we 

use the experimental CDF of the cross-validation errors. 

We also use cross-validation to predict the loss in accuracy al  using RMSPRESS  in (10), instead of RMSe : 

 1RMS
aXV

RMS ref

PRESS
l

PRESS
= −  (12) 

When considering a single surrogate, RMS ref
PRESS  is the value when the target conservativeness is 50%. When 

considering multiple surrogates, the RMS ref
PRESS  value is for the surrogate with smallest RMSPRESS  of the 

set (BestPRESS surrogate). 

6. Numerical Experiments 

6.1. Basic Surrogates 

Table 1 details the six different basic surrogates used during the investigation. The DACE toolbox of Lophaven et 

al. [27], SURROGATES toolbox of Viana [28], the native neural networks MATLAB toolbox [25], and the code 

developed by Gunn [29] were used to execute the kriging, polynomial response surface, radial basis neural 

network, and support vector regression algorithms, respectively. The SURROGATES toolbox was also used for 

easy manipulation of the surrogates. In this work, we use multiple instances of different surrogates (in the same 

fashion of [20] and [30]). This is possible because some techniques such as kriging and support vector regression 

allow different instances by changing parameters such as basis, correlation and loss functions. 
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Table 1: Information about the set of 10 surrogates. 

Surrogates Details 

KRG0 

KRG1 

KRG2 

Kriging models: 
KRG0, KRG1, and KRG2 indicate zero, first, and second order polynomial trend model, respectively. In all 

cases, a Gaussian correlation and 

1

0
nv

i pθ

−  =    
, and 3

010 2i iθ θ
− ≤ ≤ × , 1,2, , vi n= …  were used as 

initial values and bound, respectively, for the correlation parameters estimation. 

We chose 3 different kriging surrogates by varying the trend. 

RBNN 

Radial basis neural network: 

( )20.05Goal y=  and 1
3

Spread = . 

GRBF-Full 

GRBF-Short 

Poly-Full 

Poly-Short 

Support vector regression: 

GRBF and Poly indicate the kernel function (Gaussian and second order polynomial respectively). 

 

All use loss function as -insensitiveε  and quadratic, respectively. 

 

Full and Short refer to different values for the regularization parameter, C , and for the insensitivity, ε . Full 

adopts C = ∞  and 41 10ε
−= × , while Short uses the selection of values according to Cherkassky and Ma 

[26]: y kε σ= ; and for both ( )max 3 , 3y yC y yσ σ= + − , where y  and yσ  are the mean value 

and the standard deviation of the function values at the design data, respectively. 

 

We chose 4 different SVR surrogates by varying the kernel function and the SVR parameters (C and ε ). 

PRS2 

PRS3 

Polynomial response surface:  

Full models of degree 2 and 3. 

6.2. Test Problems 

As test problems, we employed two following widely used analytical benchmark problems [31]: 

 

Branin-Hoo (2 variables): 

 ( )
2

2
1 1

2 12

1 2

5.1 5 1
6 10 1 cos( ) 10 ,

84

5 10,  0 15 .

x x
y x x

x x

π ππ

     = − + − + − +        
− ≤ ≤ ≤ ≤

x
 (13) 

Hartman6 (6 variables): 

 

( ) ( )
4 6

2

1 1

exp  ,

0 1 , 1,  2,  ,  6 ,

10.0 3.0 17.0 3.5 1.7 8.0 0.1312 0.1696 0.5569 0.01

0.05 10.0 17.0 0.1 8.0 14.0
,  

3.0 3.5 1.7 10.0 17.0 8.0

17.0 8.0 0.05 10.0 0.1 14.0

i ij j ij
i j

j

y a b x d

x j

= =

  = − − −    
≤ ≤ = …

 
 
 
 = = 
 
 
  

∑ ∑x

B D

24 0.8283 0.5886

0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

0.2348 0.1451 0.3522 0.2883 0.3047 0.6650

0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

 
 
 
 
 
 
 
  

 (14) 

To investigate the effect of the sampling density, we fitted the Branin-Hoo function using both 17 and 34 points 

and the Hartaman6 function with 56 and 110 points. The quality of fit, and thus the performance, depends on the 

design of experiment (DOE). Hence, for all test problems, a set of 1000 different Latin Hypercube designs were 

used as a way of averaging out the DOE dependence of the results. We used the MATLAB function lhsdesign, set 

with the “maximin” option with 1000 iterations to generate the DOEs for fitting. 

7. Results and Discussion 
As stated before, the literature (e.g., [20]) has established that in comparing multiple surrogates, the most accurate 

one depends both on the problem and on the data set (meaning density and distribution). Figure 4-(a) illustrates this 

idea showing how the RMSe  changes for each of the unbiased surrogates over the 1000 DOEs. In a given DOE, it 

is natural to look at the variation of the RMSe  with respect to the target conservativeness. Figure 4-(b) shows how 

the RMSe  varies in an arbitrarily chosen DOE. The fact that the RMSe  values assume a large range either by 

looking at the unbiased surrogate or at different conservativeness makes us to believe that the selection of the most 

accurate surrogate depends both on the DOE and on the conservativeness. Figure 4-(c) shows in black the 
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frequency of different unbiased surrogates being most accurate out of 1000 DOEs for the Branin-Hoo function 

fitted with 34 points. We can see that PRS3, GRBF-Full, and KRG1 are competitive. We then check if in the case 

of conservative predictors, the best surrogate also changes with the target conservativeness. The gray bars in 

Figure 4 show the frequency in which the surrogates are most accurate for an arbitrary DOE when the target 

conservativeness varies from 50% to 100%. For this DOE, PRS3 has the best overall performance, but it is most 

accurate only for 15 of the 51 levels of conservativeness. We conclude that using multiple surrogates becomes 

important to avoid further losses by selecting a poorly fitted model. 

Next, we check whether cross-validation offers a practical approach for the design of the safety margin. Figure 5 

illustrates the performance of three surrogates in estimating the conservativeness level. One is the BestPRESS 

surrogate (model with smallest RMSPRESS  value), the other two are the surrogates that, out of the 1000 DOEs, 

frequently appear as the most and less accurate unbiased surrogate, respectively. 

We can see that: 

• For small number of points, we can incur large errors in the selection of safety margin. However, 

increasing the number of points allows better accuracy in selection of safety margin. Note that sparsity 

does not seem to be important, as the Hartman function with 56 points does well even though there is less 

than one point per orthant. 

• Selecting the most accurate unbiased surrogate may not lead to best accuracy of safety margin. Figure 

5-(b) shows that KRG0 (which is the most accurate unbiased surrogate) poorly performs in the design of 

the safety margin. KRG0 frequently overestimates the actual conservativeness and its performance is 

very sensitive to the design of experiment (see large spread).  

 

  

(a) eRMS when target %c = 50% (1000 DOEs). 
(b) eRMS in DOE#49, target %c varying from 50% to 100% (1% 

increments). 

 
(c) Frequency of most accurate surrogate 

Figure 4: RMSe  analysis for Branin-Hoo, 34 points: 1000 DOEs and 51 target %c (from 50% to 100%). Most accurate 

surrogate changes not only with the design of experiment but also with the target %c. 
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(a) Branin-Hoo, 17 points. (b) Branin-Hoo, 34 points 

  
(c) Hartman6, 56 points. (d) Hartman6, 110 points. 

Figure 5: Errorbars with the [10 50 90] percentiles (out of 1000 DOEs) of the actual conservativeness. Increasing the 

number of points (in spite of sparsity) allows better accuracy in selection of safety margin. 

We also checked whether cross-validation allows estimation of loss in accuracy. Figure 6 compares the actual and 

the estimated loss in accuracy as a function of the target conservativeness for PRS2. Once again, the estimates are 

poor for small number of points, but increasing the number of points permits better estimation. 

  
(a) Branin-Hoo, 17 points. (b) Branin-Hoo, 34 points 

  
(c) Hartman6, 56 points. (d) Hartman6, 110 points. 

Figure 6: Spreads with the [25 50 75] percentiles of the loss in accuracy for PRS2. More points allow good estimation of 

loss in accuracy. 

Finally, we reinforce the benefits of multiple surrogates in the loss of accuracy. Figure 7 gives the example of the 

Hartman6 function fitted with 110 points.  This figure compares four surrogates: 
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• KRG0 is the most accurate surrogate for low level of conservativeness. 

• RBNN is the most accurate surrogate for high values of conservativeness. 

• BestPRESS is the surrogate chosen at each conservativeness level using cross validation. 

• BestRMSE is the best surrogate chosen at each conservativeness level using the actual value of RMSe . 

The figure shows that for the same target conservativeness, the loss in accuracy depends on the surrogate. It means 

that if we maintain the selection a single surrogate, we will sustain a 10% of loss of accuracy for low level of 

conservativeness or an 18% loss of accuracy for high levels. We further see that PRESS successfully selects the 

surrogate for minimum loss of accuracy, since BestPRESS performs almost as well as BestRMSE (which is not 

available practically). 

 
Figure 7: Median of the actual loss in accuracy (%la) versus target conservativeness for the Hartman6 with 110 points. 

We can see that (i) most accurate surrogate changes with target %c; and (ii) cross-validation successfully selects the best 

choice. 

8. Conclusions 
We proposed using cross-validation for designing conservative estimators and multiple surrogates for improved 

accuracy. The approach was tested on two algebraic examples for ten basic surrogates including different instances 

of kriging, polynomial response surface, radial basis neural networks and support vector regression surrogates. For 

these examples we found that: 

• The best surrogate changes with sampling points (density and location) and with target conservativeness. 

• Cross-validation appears to be useful for both estimation of safety margin and selection of surrogate. 

However, it may not be accurate enough when the number of data points is small. 
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10. Appendix 

A. Cross-Validation for Surrogate Selection: 

Because the quality of fit, and thus the performance, depends on the design of experiment (DOE), the BestPRESS 

surrogate may vary DOE to DOE. The main advantage of creating a diverse and large set of surrogates is reduced 

chance of accepting poorly fitted surrogates (for example, if the DOE is not good for some surrogates but better for 

others). Obviously, the success of using BestPRESS for selecting a surrogates depends on the diversity of the set of 

surrogates and on the fidelity of the RMSPRESS  to estimates the true RMSe . Table 2 summarizes surrogates that 

are considered in the present paper for selection using different criteria in a given design of experiment (DOE). See 

Table 3 for an illustrative example. 
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Table 2: Selection of surrogates according to different criteria (in a given DOE). BestRMSE is defined based on testing 

points; BestPRESS is obtained using cross-validation.  

Criterion Comments 

RMSe  Global measure of error in prediction: the smaller, the better. 

PRESS Estimator of the RMSe : the smaller, the better 

Surrogate Comments 

BestRMSE Surrogate with the smallest RMSe  (most accurate surrogate in terms of prediction). 

BestPRESS Surrogate with smallest PRESSRMS. 

Table 3: Illustration of selection of surrogates according to different criteria for a hypothetic DOE. Bold face indicates 

which surrogate is selected. Different criteria may point to different surrogates, and the selection may vary from DOE 

to DOE. Note that BestRMSE is not practical since it is not available based on the data. Cross-validation succeeds since 

RBNN represents both BestRMSE and BestPRESS. 

Criterion KRG PRS RBNN SVR 

RMSe  3.7 2.8 2.4 4.3 

PRESS 5.5 4.1 4.0 6.1 
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