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Abstract  
Probabilistic Analytical Target Cascading (PATC) is an approach for multilevel multidisciplinary design 
optimization under uncertainty. In the existing PATC approach, only the mean and variance of each individual 
interrelated response and linking variable are matched in a multilevel hierarchy. However, due to the existence of 
random linking variables or parameters, the interrelated responses from lower-level subsystems are statistically 
correlated and have a direct influence on the statistical performance of an upper-level subsystem. The ignorance of 
response correlation introduces difficulties in finding optimal solutions especially when the covariance of 
interrelated responses has a significant impact. In this paper, an enhanced PATC (EPATC) approach is proposed to 
improve the performance of PATC by considering the correlations in optimization cycles. With the EPATC 
approach, in addition to matching the first two statistical moments, the covariance between the interrelated 
responses is also considered by applying a modified updating strategy for estimating the statistical performance of 
an upper-level subsystem.  A mathematical example and a multiscale design problem are used to demonstrate the 
effectiveness and efficiency of the proposed EPATC approach. The results using the Probabilistic All-In-One 
(PAIO) method are used as references to verify the accuracy of the EPATC approach. It is observed that the 
effectiveness of EPATC highly depends on the impact strength of the covariance on optimal solutions. Our study 
shows that the EPATC approach outperforms the original PATC by providing more accurate optimal solutions; the 
multilevel optimization that allows distributed design activities is highly applicable to multiscale design problems. 
 
Keywords: Probabilistic analytical target cascading, Multilevel optimization, Uncertainty, Correlated response, 
Multiscale design  
 
1. Introduction 
Complex systems design often involves a large number of design variables and information couplings among 
subsystems. The traditional All-In-One (AIO) optimization method may be impractical because of the high cost 
associated with the computation of a fully coupled system. Multidisciplinary design optimization (MDO) [1-8] 
methods have been developed to relieve the burden by decomposing a system into several manageable subsystems 
either in a non-hierarchical or hierarchical (multi-level) fashion. Among them, the Analytical Target Cascading 
(ATC) method [4-8] is a hierarchical MDO approach that employs multilevel optimization formulations. On the 
other hand, it is widely recognized that uncertainty universally exists in engineering systems and often causes 
unexpected quality loss or catastrophic failure [9,10]. The MDO methods have been extended to MDO under 
uncertainty (MDO-U) for designing reliable and robust systems, including Multidisciplinary Robust Design 
Optimization (MRDO) [11,12] and Reliability-Based Multidisciplinary Design Optimization (RBMDO)[13,14]. 
Most of these MDO-U methods are developed for non-hierarchical systems rather than for multilevel systems. The 
ATC method was extended to a probabilistic formulation first by Kokkolaras et al. [15], in which only the mean 
values of the interrelated responses and linking variables were matched between neighboring levels. A 
Probabilistic Analytical Target Cascading (PATC) formulation was later developed by Liu et al. [16] to match not 
only the mean but also the variance values of the interrelated responses and linking variables.  It was demonstrated 
that PATC can obtain almost the same result as that of Probabilistic AIO (PAIO) when the first two moments can 
sufficiently describe the probabilistic characteristics of random variables.  
 
One major characteristic of multilevel hierarchical systems is that the outputs of lower-level subsystems act as 
inputs to upper-level subsystems, and thus named interrelated responses. Often times these interrelated responses 
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are correlated to each other with respect to the same uncertainty source. Figure 1 shows two typical cases of 
bi-level systems with interrelated responses where covariance may exist. In Figure 1(a), due to the common 
uncertainty source in the linking variableY , the two responses 11R  and 12R  from their corresponding subsystems 
are statistically correlated, as named correlated responses in this paper. In Figure 1(b), the two responses from a 
single subsystem share the same two random inputs and therefore are statistically correlated. Such a case (Figure 
1(b)) can be transformed to the first case (Figure 1(a)) by splitting the interrelated responses 11R  and 12R  into two 
individual subsystems sharing two linking variables (X11 and X12). Ignoring the covariance in the existing PATC 
implementation results in an insufficient statistical representation of the correlated responses, and thus may yield 
an inaccurate estimation of statistical performance at the upper level. In hierarchical MDO methods, design targets 
can be set for the mean and variance of interrelated responses and cascaded down to each individual lower-level 
subsystem designs. However, it is not straightforward to cascade targets for the performance covariance to 
lower-level subsystem designs since the covariance is assessed based on the interrelated responses from multiple 
subsystems.  
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      Figure 1 Two types of bi-level system with correlated responses 
 
In this paper, an enhanced PATC (EPATC) approach is proposed to take into account the covariance of the 
interrelated responses in the hierarchical optimization process. In addition to matching the mean and variance of 
the interrelated responses and linking variables, the covariance between the correlated responses is incorporated 
into the optimization formulation by introducing a modified updating strategy for estimating the upper-level 
statistical performance. Together with the mean and variance values of interrelated responses in the current 
optimization cycle, correlation coefficients from the previous cycle are used to update the probabilistic 
characteristics of the interrelated responses, and consequently update the upper-level statistical performance. The 
rest of the paper is organized as follows. In Section 2, the PATC formulation and its limitations are first reviewed 
and the proposed EPATC approach is then presented. In Section 3, a mathematical example is tested to 
demonstrate the efficiency and accuracy of the proposed approach. In Section 4, the EPATC approach is applied to 
a multiscale bracket design problem that integrates both material and product design. Section 5 provides the 
conclusion.  
 
2. Enhanced PATC (EPATC) Approach  
2.1 Technical Background of PATC  

Figure 2 shows the design information flow of subsystem j at level i ( ijO ) in the original PATC approach. For a 
subsystem at certain level, its neighboring lower-level subsystems are called its children, while the neighboring 
upper-level subsystems are called parents. In Figure 2, ijO has ijn children in the lower levels with Rij and Yij are its 
random response and linking variable vectors, respectively. Rij are evaluated using analysis or simulation models 

( ) ( )( )1 1 1,..., , ,
ijij ij ij iji i n+ +=R f R R X Y , which are functions of local variables ijX , linking variables ijY  and children 

responses ( )1i k+R  (k=1,…,nij). The corresponding PATC formulation for subsystem ijO is shown in Eq.(1).  
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Figure 2: Information flow in PATC [16] 
 

Targets for the mean and standard deviation of Rij and Yij are assigned by the parent as U U
R R,

ij ij
μ σ and 

U U
Y Y,

ij ij
μ σ respectively. The outputs of the subsystem ijO optimization problem are the achievable mean and 

standard deviation of Rij  and Yij , and passed up to its parent as L L
R R,

ij ij
μ σ and L L

Y Y,
ij ij

μ σ . Similarly, achievable 

values of children responses and linking variables are passed up to ijO as 
( ) ( )1 1

L L
R R,

i k i k+ +
μ σ and 

( ) ( )1 1

L L
Y Y,

i k i k+ +
μ σ , taking 

into account the design consistency which are formulated as the first four constraints in Eq.(1). The optimization 
problem for subsystem ijO is solved to find the optimum values for its local design variables ijX , linking variables 

ijY and the target for its children’s responses [
( ) ( )1 1

U U
R R,

i k i k+ +
μ σ ] and linking variables [

( ) ( )1 1

U U
Y Y,

i k i k+ +
μ σ ], to minimize the 

discrepancy between parent targets U U U U
R R Y Y, , ,

ij ij ij ij
μ σ μ σ and R R Y Y, , ,

ij ij ij ij
μ σ μ σ respectively, and to satisfy the 

consistency constraints as well as the probabilistic constraints. The completion of all the optimizations of the 
subsystems in the hierarchy is considered as one optimization cycle. With PATC, targets (mean and variance) are 
set and cascaded down by the upper-level subsystems (parents) to the responses and linking variables of the lower 
levels (children), while the lower-level subsystems try to match these targets and feeding back their achievable 
values. Such process of “target cascading – response feedback” will continue level by level, then cycle after cycle 
till the convergence criterion is achieved.  
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In a multilevel (e.g. bi-level) hierarchy (see Figure 1(a)), uncertainties associated with the lower-level inputs 

11 12 ,X X and Y  are propagated to the upper-level interrelated subsystem responses 11 12 ,R R and further to the 
top-level subsystem performance 0R . Uncertainty will exist at any level in the hierarchy and it is very important to 
propagate the uncertainty across different levels accurately. The distributions of 11R and 12R are correlated as a 
result of sharing a common uncertainty source associated with the linking variableY . Such correlation cannot be 
ignored for an accurate assessment of the top-level statistical performance 0R in the hierarchical system. In the 
original PATC formulation and solution procedure, the uncertainties of 11 12,R R are propagated to the upper-level 
responses only in terms of mean and variance values, without considering the covariance between the interrelated 
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responses. When the statistical performance measures of the upper-level responses are inaccurate, it consequently 
results in an inferior or even inconsistent optimal solution at the end of the iterative optimization process. 
 
2.2 Description of EPATC 
To overcome the limitation of PATC in dealing with correlated responses, the enhanced probabilistic analytical 
target cascading (EPATC) approach is proposed in this paper. With EPATC, these correlated responses are 
assumed as multi-variant normal distributions rather than uncorrelated normal ones in the original PATC. Based 
on the PATC formulation as shown in Eq. (1), a modified strategy for updating the statistical performances at the 
upper level of a hierarchy is developed and therefore the uncertainties are propagated more accurately across the 
hierarchy. A flowchart of the EPATC with a top-down strategy for a demonstrative bi-level design problem is 
illustrated in Figure 3. X_opt denotes the optimal design variables at all the levels including local design variables 
and linking design variables. The dashed box represents the process of computing the correlation coefficients of 
the correlated responses based on the optimal solution X_opt obtained in cycle S, which can be described as three 
steps below: 

Step  1. Distribute the current optimal solution X_opt to each subsystem at all levels in the hierarchy; 
Step  2. For each subsystem, based on the optimal values obtained in step 1 and the distribution parameters, 
calculate its output response by Monte Carlo method [17]; 
Step  3. Calculate the correlation coefficients (cov) between the correlated responses. 

As mentioned in Introduction, the covariance cannot be obtained as the “target” performance in the current 
optimization cycle. Therefore,  in the next cycle S+1 (S>1), these correlation coefficients obtained from the 
previous cycle S together with the mean and variance of the interrelated responses in the current cycle S+1 will be 
used to estimate the probabilistic characteristics (mean and variance) of the upper-level responses. Different from 
the original PATC in which the dash box in Figure 4 is not introduced, the covariance is estimated and then taken 
into account in EPATC. Such a treatment yields more accurate statistical assessments in the upper levels when the 
impact of covariance cannot be ignored. 
 

 
 

Figure 3: Flowchart of EPATC [18] 
 

3. Case Study 
In this section, a mathematical example is used to demonstrate the benefits of the proposed EPATC approach. The 
deterministic all-in-one (AIO) optimization problem is formulated in Eq. (2) with four design variables. Both the 
optimal design variables X of EPATC and PATC are plugged into the PAIO formulation to obtain the confirmed 
objective f and constraint g function values. The optimal solutions (X, confirmed f and confirmed g) are verified by 
comparing to the ones using the PAIO method. In order to demonstrate the impact of the magnitude of covariance 
on the optimal solutions, different sets of standard deviation values (STD) of random design variables are tested. 
To eliminate the influence of different optimization process settings such as initial start points, stopping criterion, 
and weights in PATC formulation, all the settings in both the approaches (PATC and EPATC) are kept the same. 
The Monte Carlo method is used to calculate all the probabilistic characteristics of the objective and constraint 
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functions. All probabilistic constraints are simplified into the moment-matching formulation, i.e., 0g gkμ σ+ ≤ . 
The required reliability levelα is 99.865% (k=3) for all probabilistic constraints. Multiple starting points are tested 
to find global optimal solutions. This mathematical example is formulated as a bi-level design structure by EPATC 
shown in Figure  4. 
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Figure 4: Information flow in EPATC of the mathematical example 

 
There are two subsystems at the bottom level and each has one response ( 11R  and 12R  respectively) passed to the 
top level. 1x , 2x  and 3x are the local design variables that belong to each subsystem across two levels. The linking 
variable Y , which is denoted as 4x in the AIO formulation, is considered as the only random design variable 
subject to a normal distribution. The correlation coefficient between 11R  and 12R  from the previous cycle is 
denoted as cov. The EPATC formulation is provided in Eqs.(3)-(5) in which 0O  is the top-level optimization 
problem and 11 12,O O  are the two bottom-level optimization problems. 
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Three different STD values of the random variable Y (STD = 0.01, 0.05, 0.1) are tested. Optimal solutions of the 
design variables, the objective function and constraint values using EPATC, PATC and PAIO are shown in Table 
1 (STD= 0.1). It is observed that compared to PATC, both the optimal design variables and the objective function 
using EPATC are much closer to the ones using PAIO. Although PATC provides the best (minimum) objective 
function value among the three methods, the optimal solution of PATC is not feasible since one of the constraints 
are not satisfied (g1=0.037). The errors of the design solutions for the three different STD values are also displayed 
in Table 2.  It is found that for all the three STD values, the proposed EPATC approach always performs better than 
PATC. The larger the STD value is, a strong correlation between the interrelated responses exists and hence the 
more significant improvement EPATC can achieve compared to PATC. The consideration of covariance in 
EPATC provides an accurate estimation of the upper-level statistical response and consequently results in an 
accurate optimal solution of a multilevel design problem. 
 

Table 1: Comparison of optimal solutions (STD=0.1) 
 

 EPATC PATC PAIO 

X 12.1988 1.3571 
0.7708    0.5504

13.2830  1.3421
0.7503  0.5692

12.2076 1.3552   
0.7658   0.5604 

Relative error (X) 0.12% 8.73% --- 
Objective f 5177.7 4249.8 --- 
Confirmed f 5154.2 4300.3 4986.0 

Relative error (f) +3.37% -13.75% --- 
Constraint g1 0 0 --- 
Confirmed g1 -0.0042 0.037 0 

 
Table 2 : Comparison of optimal solution between EPATC and PATC 

 
Relative error of X Relative error of f  

STD=0.1 STD=0.05 STD=0.01 STD=0.1 STD=0.05 STD=0.01 
EPATC 1.68% 2.13% 3.05% 0.62% 7.25% 5.67% 
PATC 10.25% 3.96% 3.20% 17.32% 17.76% 12.50% 

 
4. Application of EPATC to Multiscale Bracket Design Problem 
Multi-scale design is an emerging research topic that is built upon multiscale simulations to design systems at 
different scales (length and time) for achieving the required system performances [19]. Recent years have seen 
work that views multiscale design as a multidisciplinary design activity where design decisions are made by each 
individual discipline (e.g., material design, product design, and manufacturing process design) with a common 
objective of achieving the desired product performance [20]. Due to the hierarchical structure of scale 
decomposition in multiscale systems, there is a potential to exploit the existing hierarchical multidisciplinary 
design optimization techniques, such as the multilevel optimization methods for making design decisions at 
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various scales. Although PATC has been applied to various multilevel optimization problems in vehicle and 
aircraft systems design applications, there does not exist any application of PATC to multiscale integrated material 
and product design. In this section, we illustrate the use of EPATC for multiscale design.  The effectiveness of the 
approach is verified by solving the same problem using the PAIO formulation.  
 
4.1 Problem Description  
The multiscale design problem is considered as a multilevel multidisciplinary design problem to design optimal 
material microstructure and product geometry that yields the minimum volume of material, subject to the stress 
constraint. Figure 5 illustrates the framework of the multiscale problem as well as the information flow in the 
bi-level EPATC formulation. The multiscale bracket problem contains one product model at Scale 1 and one 
material model at Scale 2.  At Scale 1, the left vertical surface of the bracket structure is fixed on the wall and the 
displacement boundary condition is applied to the upper surface of the bracket. There are three product design 
variables (CX, CY, R) that represent the location and radius of the hole in the bracket. The finite element modeling 
and analysis is implemented in an ABAQUS© environment to predict the maximum stress, which is expressed in 
terms of CX, CY, R, k and n within the bracket when the boundary conditions are fully applied.  The strength index 
(k) and strain hardening index (n) are material design parameters from the power model to represent the material 
constitutive property. At Scale 2, a Representative Volume Element (RVE) material model [21] is employed to 
construct the microstructure-constitutive property relation of an aluminum alloy material. The aluminum alloy 
material contains micro silicon particles uniformly distributed in the aluminum matrix. Silicon Particle Volume 
Fraction (PVF) and Particle Density (N) which quantitatively characterize the material microstructure are 
introduced as two material design variables. A power model is employed to fit the strain-stress curve from RVE 
simulations. The fitting process follows the one introduced in Ref. [22] although only the uniform configuration is 
considered. k and n act as two interrelated responses passed up to Scale 1. Due to the high computational cost of 
RVE simulations, the Kriging metamodels [23] are constructed for material property responses (k and n) as 
functions of microstructure material design variables PVF and N.  
 

Design of Product:
Smax= modelS(Cx ,Cy ,R,k,n)

Design of Material: 
k= modelk (PVF,N)  &  n= modeln(PVF,N)

Smax Smax

T T,μ σ
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Figure 5: Framework and information flow in EPATC of the multi-scale bracket problem 
 

The design objective is to minimize the material volume used in the bracket product, which is equivalent to 
maximizing the radius of the hole. The maximum stress occurred in the bracket should be less than the critical 
stress ( SmaxC ).Additional geometry constraints ( 2g – 4g ) are applied to ensure the hole within the bracket 
external contour. The deterministic AIO (all-in-one) optimization formulation of this problem is shown in Eq. (6). 
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where { } { }1 2 3 4 5, , , , , , , ,X YX x x x x x C C R PVF N= = , modelk  and modeln  are the Kriging metamodels for the two 

interrelated responses k and n; Smodel stands for the Kriging metamodel of the maximum stress; 1g  is the 
maximum stress constraint. Due to the random nature of material, the microstructure design variables PVF and N 
are considered as random design variables in this problem. It is found that the two interrelated responses (k and n) 
from model Scale 2 are highly correlated. The proposed EPATC approach is applied to the multiscale design 
problem formulated in Eq.s (7)-(8). Following the target cascading fashion, targets of the desired material design 
parameters k and n are determined at Scale 1 (Eq. (7)) and assigned to the Scale 2 design problem (Eq. (8)). The 
Scale 2 design optimization is carried out to match the targets. When applying the EPATC approach, the obtained 
covariance of the material responses k and n is considered in Scale 1 model analysis to ensure a more accurate 
evaluation of Smax in the next cycle.  
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= =

                         (8) 

 
4.2 Optimization Results 
Three different sets of STD values (V1=[0.0067 0.30], V2=[0.008 0.40], V3=[0.009 0.45]) for the two random 
material design variables (PVF and N) are tested. The results using the PAIO method are used as reference to 
verify the effectiveness of the proposed EPATC approach. Table 3 lists the optimal design variables of EPATC 
and PAIO, respectively. It is found that the results of EPATC are almost identical with the ones using PAIO for all 
the STD values with the maximum relative error as 0.17%. The confirmed objective f values of PATC are 
calculated by plugging the optimal design variables into the PAIO formulation. The mean and standard deviation 
values of the two interrelated responses (k and n) at the optimal design values and the confirmed f are displayed in 
Table 4. The relative error of the objective function value does not exceed 0.25% compared to the one using PAIO. 
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Compared to the PAIO method that treats all models at different scale levels as an integrated system, the EPATC 
follows the hierarchical decomposition strategy in which a complex system is divided into subsystems at different 
levels, and each subsystem design problem is solved in a target cascading iterative fashion. Such a method 
maintains the design autonomy of each subsystem at different levels. By considering the covariance between 
interrelated responses, the EPATC method propagates uncertainties across the multi-levels provides accurate 
statistical estimations of the responses during optimization. Through the application problem, the EPATC 
approach demonstrates great advantages and a high applicability for multiscale design problems. 
 

Table 3: Optimal design variables for different STD values 
 

STD EPATC PAIO /X XΔ
V1 65.4009 -65.0677  45.0354  0.0516    4.0000 65.2398 -65.0912  45.0912  0.0515    4.0000 0.17% 
V2 66.2161 -64.8449  44.8449  0.0540    4.2000 66.2219 -64.8617  44.8417  0.0540    4.2000 0.013%
V3 68.3668 -64.3025  44.3025  0.0570    4.3500 68.4860 -64.2724  44.2724  0.0570    4.3500 0.12% 

 
Table 4: Objective and interrelated responses for different STD values 

 
STD V1 V2 V3 

EPATC 2028.2 2011.1 1962.8 Confirmed 
f PAIO 2033.2 2010.8 1960.0 
/f fΔ                        --- 0.25% 0.0149% 0.140% 

EPATC 0.2544 0.2533 0.2510 
kμ  PAIO 0.2545 0.2533 0.2510 

EPATC 0.0036 0.0052 0.0069 
kσ  PAIO 0.0036 0.0052 0.0069 

EPATC 0.8619 0.8553 0.8459 
nμ  PAIO 0.8619 0.8553 0.8459 

EPATC 0.0170 0.0230 0.0286 
nσ  PAIO 0.0170 0.0230 0.0286 

 
5. Conclusions 
In this paper, an enhanced probabilistic analytic cascading approach is proposed to design multilevel 
multidisciplinary systems especially with interrelated responses between different levels. Such a correlation due to 
a common uncertainty source has an impact on both the statistical measures of upper-level performances and the 
final optimal solutions. In the EPATC approach, a more general PATC formulation that considers the covariance 
between the correlated responses in addition to their first two statistical moments is developed. A modified 
updating strategy is proposed to estimate the upper-level performance considering the covariance between the 
correlated responses. The proposed EPATC approach is tested via a mathematical example and a multiscale design 
problem to demonstrate its applicability and effectiveness. Based on our empirical study, the EPATC approach 
outperforms the PATC method especially when the correlation between interrelated responses has a large impact 
on the statistical measures of system performances and the optimal solution of the hierarchical system designs.  
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