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1. Abstract  

Due to expensive experimental testing costs, in most industrial engineering applications, only limited statistical 

information is available to describe the input uncertainty model. It would be unreliable to use an estimated input 

uncertainty model, such as distribution types and parameters including the standard deviations for the distributions, that is 

obtained from insufficient data for the design optimization. Furthermore, when input variables are correlated, we would 

obtain non-optimum design if we use the assumption of independency for the design optimization.  

In this paper, two methods for problems with lack of input statistical information – reliability-based design 

optimization (RBDO) with confidence level on the input model and possibility-based design optimization (PBDO) – are 

compared using a mathematical example and Abrams roadarm of an M1A1 tank. The comparison study shows that the 

PBDO could provide an unreliable optimum design when the number of samples is very small and that it provides an 

optimum design that is too conservative when the number of samples is relatively large. Furthermore, the optimum design 

does not converge to the optimum design obtained using the true input distribution as the number of samples increases. On 

the other hand, the RBDO with confidence level on the input model provides a reliable optimum design in a stable and 

consistent manner, and the optimum design converges to the optimum design obtained using the true input distribution as 

the number of samples increases. 

 

2. Keywords:  Identification of Joint and Marginal CDFs, Reliability-Based Design Optimization (RBDO), 

Possibility-Based Design Optimization (PBDO), Correlated Input, Copula 

 

3. Introduction 

Extensive research on reliability analysis and design optimization has been performed under the premise that an 

accurate input statistical model, such as the probability density function (PDF) or the cumulative distribution function 

(CDF), is available. Monte Carlo simulation (MCS) [1] is a very common and powerful method for estimating the 

reliability of a system. However, MCS requires a very large number of samples to accurately estimate the reliability, and 

this is not acceptable in large-scale industrial engineering applications. On the other hand, when applicable, MCS has 

been used as a benchmark test to compare the accuracy of a method. The importance sampling method [2] is also a 

simulation-based method; it requires a smaller number of samples than MCS but still a very large number of samples. As 

analytical methods for reliability analysis and reliability-based design optimization (RBDO), the first-order reliability 

method (FORM) [1,3-5] and the second-order reliability method (SORM) [6,7] have been widely used. To overcome the 

weaknesses of FORM and SORM, the most probable point (MPP)-based dimension reduction method (DRM) has 

recently been proposed [8,9]. As mentioned earlier, all these methods can be used for reliability estimation and design 

optimization only when the accurate input statistical model is available.  

Theoretically, infinite raw data are necessary to exactly estimate the input statistical model. However, in many 

industrial engineering applications, it is difficult or impossible to have sufficient raw data for the accurate estimation of 

the input statistical model. In a case where it is not possible to estimate the accurate input statistical model, the 

probability-based methods may not be appropriate since improper modeling of input uncertainty could affect the system 

output more significantly than physical uncertainty does [10,11]. In such a case, possibility-based analysis and design 

optimization (PBDO) [12-15] or RBDO with confidence level on the input model [1,16,17] can be used to ensure a 

conservative optimum design.  

Hence, the main focus of this paper is to compare two methods in terms of how conservative and stable the methods 

are for problems with lack of input statistical information, especially when the inputs are correlated. To apply both 

methods to the design optimization, it is necessary to estimate the input statistical model using a limited number of data. 

For this purpose, the Bayesian method [18,19] is introduced to identify the input marginal and joint CDF. After the 
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estimation of the input statistical model, the RBDO with confidence level on the input model uses the upper bound of 

confidence interval of the estimated standard deviation, whereas the PBDO uses the estimated standard deviation but a 

different transformation. Since the existing possibility-based studies mentioned above are based on the assumption that 

input uncertainties are non-interactive, which corresponds to ―independent‖ in the reliability theory, it is necessary to 

propose a new transformation for the interactive fuzzy variables. 

In this paper, a mathematical example is used to show how two methods work in a problem with a lack of information 

and correlated input variables. The results of the two methods are compared with the MCS result. In addition, since certain 

fatigue material properties are known to be negatively correlated [20-22], a real engineering example, the Abrams 

roadarm of an M1A1 tank, which has fatigue life constraints, is also used to compare two methods. In this case, due to the 

expense of the simulation, MCS cannot be carried out for the benchmark result. Instead, a simple cost comparison is used 

to judge which method is more conservative. Section 4 briefly explains how to estimate the input statistical model using 

the Bayesian method. Sections 5 and 6 illustrate two methods, RBDO with confidence level on the input model and 

PBDO. Finally, two methods are compared using a mathematical example and an engineering problem in Section 7, 

followed by conclusions in Section 8. 

 

4. Estimation of Input Statistical Model 

Before the RBDO or PBDO is carried out, it is necessary to accurately identify the input statistical model, such as 

marginal CDFs, the joint CDF, and their parameters, using the limited experimental data. For the effective identification 

of the input marginal and joint CDFs, the Bayesian method is introduced and explained in Section 4.1. Section 4.2 

illustrates how to quantify distribution parameters such as mean, standard deviation, and correlation coefficient. 

 

4.1. Identification of Marginal and Joint CDFs Using the Bayesian Method 

Consider a finite set  qs s  consisting of candidates 
kM , 1, , ,k q  where s is a set of all candidates and q is the 

number of the candidates. The Bayesian method consists of defining q hypotheses: 

kh : The data come from candidates
 kM , 1, ,k q   

The probability of each hypothesis 
kh  given the data D is defined as [18,19] 
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where  Pr ,kD h I  is the likelihood function,  Pr kh I  is the prior on the candidate, and  Pr D I  is the normalization 

constant with any relevant additional knowledge I. Equation (1) can be rewritten in an integration form as 
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where   is a parameter such as mean and standard deviation for the identification of marginal distributions and a 

correlation coefficient for the identification of a joint distribution.  

For the input marginal distribution, seven candidates, which are Gaussian, Weibull, Gamma, Lognormal, Gumbel, 

Extreme, and Extreme type II distributions, are used. For the joint distribution, eight candidate copulas (C), which are 

Clayton, AMH, Gumbel, Frank, A12, A14, FGM, and Gaussian, are introduced to model the joint distribution [23-25].  

Under the hypothesis kh  that the data D come from the candidate kM , the likelihood function in Eq. (2), which is the 

probability of drawing the data D for the hypothesis on kM , is expressed as   
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for a marginal PDF kf  and 
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for a copula density function kc , which is defined as 
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for bivariate data. In Eq. (3), ix is the i
th

 sample value and ns is the number of samples; in Eq. (4), iu and iv  are the 

marginal CDF values defined as  i X iu F x  and  i Y iv F y  and obtained from the given paired data  ,i ix y . Since the 



 

 

paired data are independent of each other in Eqs. (3) and (4), the likelihood function is expressed as multiplications of the 

marginal PDFs and copula density function values evaluated at all the data.  

Let the additional information  I  be as follows [18,19]:  

I1: A parameter   belongs to the set 
 , and each estimated parameter is equally likely. 

I2: For a given parameter, all candidates satisfying k

  are equally probable where k

  are domains of   for 
kM .  

The set 
  provides information on the interval of   that a user might know. For example, if the user knows the 

specific domain of 
 , the domain can be used to integrate the likelihood function. However, if any information on   is 

not provided, it might be assumed as  ,     for mean,  0,  
 
for standard deviation, and

 
 1,1  

 
for 

Kendall’s tau. For the mean and standard deviation, the infinite domain cannot practically be used to integrate the 

likelihood function, and thus the finite range of 
  needs to be determined from samples such that 

 covers a wide 

range of  .  

Using the first additional information I1, the prior on  can be defined as  
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where     is the Lebesgue measure and is defined as the interval width of 
 . Likewise, since all candidates 

kM  are 

equally probable for k

  , the prior on kM is defined as 
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     (7) 

In this paper, it is assumed that the prior follows a uniform distribution, which means there is no information on the 

distribution of  .   

The normalization constant  Pr D I  can be expressed as 
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Since the normalization constant does not affect the identification of the input statistical model, it is not used in Eq. (2). 

Substituting all the equations, Eq. (2) can be rewritten as 
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for the marginal CDF identification and 
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for the joint CDF identification. The value calculated from Eqs. (9) and (10) is called the weight ( kW ) and is used to 

identify the marginal and joint CDFs. The largest weight means that the candidate marginal or joint CDF is best fitting the 

given data set, and the candidate with the largest weight is selected to describe the input statistical model. For ease of 

understanding, the normalized weight of each candidate is used in this paper and is defined as 
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4.2. Quantification of Distribution Parameters  

Once the marginal and joint CDFs are identified using the Bayesian method, it is necessary to quantify their 

parameters based on the given data. The mean and variance that are estimated from the given data are called the sample 

mean x  and variance 
2s  and are given by 
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respectively. To calculate the correlation parameter θ from the given data, first, the sample version of Kendall’s tau is 

calculated as [23]  
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where c is the number of concordant pairs and d is the number of discordant pairs. Then, θ is calculated using the explicit 

formulation for each copula [23-25]. 

For the calculation of the confidence interval of standard deviation, suppose that X  is a Gaussian random variable 

and  the samples come from ns independent Gaussian random variables, i.e., 
1X , 

2X ,···, 
nsX , and let μ and 

2  be a 

population mean and variance, respectively. From Eq. (13), the sample variance, which is also a random variable, can be 

rewritten as 
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Dividing both sides of Eq. (15) by 
2 , Eq. (15) is written as 
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Since the first term and the second term of the right side of Eq. (16) follow a chi-square distribution with ns and one 

degree of freedom, respectively. The left side of Eq. (16) also follows a chi-square distribution with ns−1 degree of 

freedom, denoted as 
2

1ns  [1].  

When the PDF has a chi-square distribution with ns−1 degrees of freedom, the two-sided (1−α)% confidence interval 

for 
2  is given as 

  2

/ 2, 1 1 / 2, 12

1
Pr 1ns ns

ns S
c c  


  

 
    

     

                                           (17) 

where c can be obtained from the chi-square distribution table using the given α and degrees of freedom. Using the 

realization of 
2S , denoted as 

2s , Eq. (17) is written as 
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Thus, the lower and upper bounds of the (1−α)% confidence interval for the standard deviation are calculated as 
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and 
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respectively. The upper bound in Eq. (20) is used for the RBDO with confidence level on the input model, which will be 

explained in Section 5, to have the required confidence level on the input model and thus obtain a conservative optimum 

design for problems with lack of input statistical information. 

 

5. Probabilistic Approach: RBDO with Confidence Level 

The RBDO problem can be formulated to 
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where X  is the vector of random variables; d  is the vector of design variables, which is the mean value of X , 

( )d X ; ( )P   is a probability measure; ( )iG X  represents the i
th

 constraint functions and constraint is defined as 

failure if ( ) 0iG X ; 
i

Tar

FP  is the given target probability of failure for the i
th

 constraint; and nd, nr, and nc are the number 

of design variables, random variables, and constraints, respectively. 

Using the enhanced performance measure approach (PMA+) [26], the i
th

 constraint in Eq. (21) can be rewritten in a 



 

 

deterministic way as  
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where
*

R( )iG x  is the i
th

 constraint function evaluated at the MPP, 
*

Rx , obtained from the inverse reliability analysis. To 

find the MPP, the Rosenblatt transformation [27] from the original space (X-space) into the standard Gaussian space 

(U-space) is required. Assuming that all input random variables are independent—that is, the joint CDF is given by the 

multiplication of the marginal CDFs—the transformation is given as 
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are the CDF and PDF of the standard Gaussian random variable, 

respectively. For problems with lack of input statistical information, the upper bound of the standard deviation obtained 

using Eq. (20) will be used for the transformation, instead of using the estimated standard deviation. For example, if the 

Gaussian distribution is identified for a random variable Xi, then the transformation in Eq. (23) will be   
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where 
e is the estimated mean from the samples.  

The Rosenblatt transformation for the correlated variables is obtained using the copula and marginal CDF estimated 

from the insufficient data as 
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where ( )  is the CDF of the standard Gaussian random variable,
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obtained from the joint CDF by using 1 1,X x 2 2X x 1 1, , i iX x  , C is the copula, and θ  is the matrix of the 

correlation parameters of 1, , nx x . If only two variables, xi and xj, are correlated, then the transformation in Eq. (25) can 

be simplified as  
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based on different transformation orders. The effect of the transformation order is beyond the scope of this paper and 

explained in detail by Noh et al. [28]. For the correlated variables, the upper bound of the standard deviation in Eq. (20) is 

used for the transformation if a problem has lack of input statistical information. 

Using the transformation explained above, the MPP in Eq. (22) can be obtained by solving the following optimization 

problem (inverse reliability analysis):  
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However, since the FORM uses the linear approximation at the MPP, the probability of failure estimation using the 

FORM could very well be erroneous if the performance function is highly nonlinear or multi-dimensional or both. In such 

a case, a more accurate probability of failure estimation can be obtained using the MPP-based DRM and a more accurate 

MPP denoted by 
*

DRMx  can be obtained using the accurate probability of failure [9]. Hence, for a system with highly 

nonlinear or multi-dimensional performance functions, Eq. (21) can be reformulated as  
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6. Possibilistic Approach 

When sufficient data are not available for modeling input CDFs, the probability-based method using the estimated 

standard deviation may not be appropriate since improper modeling of input uncertainty could affect the system output 

more significantly than the physical uncertainty does. In such a case, the possibility-based method where input variables 

are treated as fuzzy variables could be one option since the possibility-based method yields a more conservative optimum 

design than the probability-based method if the same input statistical model is used [11]. The difference between the 

RBDO with confidence level on the input model and the PBDO for a problem with a lack of input statistical information 

is that the RBDO with confidence level on the input model uses the upper bound of the standard deviation as an input, 

whereas the PBDO directly uses the estimated standard deviation but with a different transformation, which is explained 

in Section 6.2. 

 

6.1. Formulation 

For a system with a lack of information on input data, the PBDO problem can be formulated to  
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where X is the vector of fuzzy variables where each fuzzy variable Xi has the membership function ( )
iX ix  and the 

maximal grade max{ ( )}
iX i ix d  [29]; ( )   is a possibility measure; 
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constraint; and nf is the number of fuzzy variables. Theories on possibility and fuzzy set are explained in detail by Du and 

Choi [11]. 

Similar to Eq. (22), using PMA+, the constraints in Eq. (31) are converted in a deterministic manner to  
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where ( )iG v  is the i
th

 constraint function in the standard normalized fuzzy V-space defined as  

( ) ( ( )) ( )i i iG G G v x v x                                                                       (34) 

The transformation from X-space to V-space will be explained in Section 6.2 in detail for both non-interactive and 

interactive fuzzy variables. 

In many industrial engineering applications, random and fuzzy variables may exist simultaneously. For example, in 

structural fatigue analysis, geometry variables can be treated as random variables since it is easy to handle the geometry 

during the manufacturing process. On the other hand, fatigue material properties can be treated as fuzzy variables since it 

is very expensive to measure the variability of fatigue material properties and oftentimes there are not sufficient data 

available. In a case that has random and fuzzy variables simultaneously, if all variables are treated as random, then the 

design optimization could show an unreliable optimum design due to improper modeling of input uncertainty. But if all 

variables are treated as fuzzy, then the optimization could yield too conservative an optimum design [11]. Hence, in such 

a case, it is desirable to use the mixed variable design optimization (MVDO) [14], which is formulated using PMA+ to  
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The MPP in Eq. (35) can be obtained by solving the optimization given by 
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where ( , )ig u v  is the i
th

 constraint function defined as   

( , ) ( ( ), ( )) ( )i i ig G G u v x u x v x                                                                      (37) 



 

 

 

6.2. Transformation 

As explained in the previous section, to carry out the inverse possibility analysis, the fuzzy variables Xi need to be 

transformed to the standard normalized fuzzy variables Vi using the membership function. Thus, for the transformation, it 

is necessary to generate the membership function from the temporary CDF, which is the estimated CDF from the 

insufficient samples. 

For non-interactive fuzzy variables, the membership function is generated to satisfy the probability-possibility 

consistency principle and the least conservative principle [13] as 
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(38) 

where ( )
iX iF x  is the temporary CDF of Xi estimated from insufficient data. Then, the transformation from Xi to Vi can be 

written as 
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where , ( )
iX L ix  and , ( )

iX R ix  are the left side and right side of the membership function of the input fuzzy variable Xi, 

respectively, and di is the maximal grade of the membership function. Inserting Eq. (38) into Eq. (39) yields  
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  (40) 

Figure 1 shows the hyper-cube for the inverse possibility analysis obtained using Eqs. (33) and (40) with the 

corresponding target possibility of failure 0.02275  , where both X1 and X2 follow the Gaussian distribution with a 

mean of 5 and a standard deviation of 0.3. From the figure, it can be seen that the hyper-cube is always larger than the 

hyper-sphere for the inverse reliability analysis if the same input statistical model is used, which guarantees that the 

possibility-based method is always more conservative than the probability-based method.  
 

 
Figure 1. MPP Search Domain for Inverse Possibility and Probability Analysis 

 

For interactive fuzzy variables, a new transformation from X-space to V-space is required for the inverse possibility 

analysis to find the MPP. Since the transformation for the non-interactive fuzzy variables can be readily used, as shown in 

Eq. (40), it is necessary to transform the interactive fuzzy variables X to the non-interactive fuzzy variables Y using Eq. 

(25). If only two variables, xi and xj, are interactive, then the transformation can be expressed as  
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or  
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Then, the non-interactive fuzzy variables Y are transformed to the non-interactive standard normalized fuzzy variables V 

using Eq. (40) as 
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for the bivariate data.  

Figure 2 shows the MPP search domain for the interactive bivariate data where the true copula is the Clayton and the 

two marginal CDFs are normal. As shown in Fig. 2, the MPP search domain for the inverse possibility analysis is still 

larger than the domain for the inverse probability analysis even when the variables are correlated, which still guarantees 

that the possibilistic approach is always more conservative than the probabilistic approach if the same input statistical 

model is used. The two vertical lines along the X2-axis in the MPP domain for the inverse possibility analysis in Fig. 2 

appear because the transformation in Eq. (43) is used. If Eq. (44) is used, then the MPP search domain will have two 

horizontal lines along the X1-axis. Hence, two different optimum results are obtained, depending on the transformation 

order used. The probabilistic approach can reduce the difference between two different transformation orders using the 

MPP-based DRM, whereas the difference cannot be reduced in the possibilistic approach.  

 

 
Figure 2. MPP Search Domain for Correlated Random and Fuzzy Variables 

 

Since the transformation for the interactive fuzzy variables is now available, the design optimization can be 

formulated for a general case in which correlated or independent random variables and interactive or non-interactive 

fuzzy variables coexist. In such a case, the design optimization and MPP search can be still formulated using Eqs. (35) and 

(36), respectively. For the inverse analysis to find the MPP, which is carried out in the standard space (UV-space), the 

transformation in Eq. (23) for the independent random variables, the transformation in Eq. (26) or (27) for the correlated 

random variables, the transformation in Eq. (40) for the non-interactive fuzzy variables, and the transformation in Eq. (43) 

or (44) for the interactive fuzzy variables are used. 

 

7. Numerical Examples 

Numerical studies are carried out in this section to compare two approaches, PBDO and RBDO with confidence level 

on the input model, using a 2-D mathematical example and an M1A1 Abrams tank roadarm example. For both examples, 

a true input statistical model is assumed, and then a limited number of data is sampled from the true input statistical 

model. Using the sampled data, the input marginal and joint CDFs are identified. In addition, distribution parameters and 

their upper bounds are also quantified from the samples. PBDO and MVDO directly use the identified CDFs and 

estimated distribution parameters. On the other hand, RBDO with confidence level on the input model uses the identified 

CDFs and the upper bound of the estimated standard deviation for design optimization. In a 2-D mathematical example, 



 

 

results of both methods are compared with the MCS result to see which method yields an optimum design that is reliable 

but not too conservative. For this comparison, 100 data sets are used for each number of sampled data to see the statistical 

behavior of two methods. In an M1A1 Abrams tank roadarm example, since the MCS cannot be used due to its 

computational expense, the cost functions of both methods are compared with the cost function obtained using the true 

input statistical model. 

 

7.1. 2-D Mathematical Example 

Consider a 2-D mathematical example with a linear cost function and three constraints written as  
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The true input marginal distributions for Eq. (45) are assumed to be 
2

1 1~ ( ,0.3 )X N d and
2

2 2~ ( ,0.3 ),X N d  respectively, 

and joint distribution is assumed to be the Clayton copula with the correlation coefficient 0.5.   Both the marginal and 

joint CDFs are assumed to be unknown and must be identified using the Bayesian method explained in Section 4.1. 

However, in this example, the identification of the marginal and joint CDFs are assumed to be exact because the effect of 

the identification on two approaches are almost the same and the main focus of this example is to see the effect of the 

quantified distribution parameters on two different approaches with different numbers of samples. The target probability 

of failure is given as 
Tar 2.275%
iFP  , and  the target possibility of failure is also given as 0.02275

it  for all constraints. 

Figure 3 shows the shape of the constraints in Eq. (45).
  

 
Figure 3. Constraint Shape of Eq. (45) 

 

Table 1 shows the estimated distribution parameters—mean ( est ) and standard deviation ( est )—and the upper 

bounds of the standard deviation obtained using 95% confidence level on the input model ( upp ) obtained from 100 

sample sets. In Table 1, ns means the number of samples. From the table, it can be seen that the mean values of the 

estimated mean and standard deviation are very close to the true values, which are 5.000 and 0.3, respectively. However, 

the variation of the estimated values decreases as the number of samples increases. The same situation occurs in the 

estimation of the correlation coefficient as shown in Table 2, but the variation of the correlation coefficient is larger than 

mean and standard deviation.  

 



 

 

Table 1. Estimated Parameters and Bounds (100 Sample Sets) 

 
X1 X2 

Min. Mean Max. Min. Mean Max. 

est  

ns=10 4.8072 5.0073 5.2192 4.7894 4.9986 5.2305 

ns=50 4.8974 4.9978 5.0927 4.8902 4.9987 5.1055 

ns=100 4.9144 4.9950     5.0775 4.9238 4.9973 5.0639 

ns=500 4.9760 5.0000 5.0350 4.9681 5.0016 5.0316 

est  

ns=10 0.1515 0.2955 0.5053 0.1599 0.2991 0.4513 

ns=50 0.2372 0.2970 0.3687 0.2251 0.2979 0.3935 

ns=100 0.2458     0.3000     0.3564 0.2513 0.3019 0.3662 

ns=500 0.2777 0.2993 0.3209 0.2771 0.3016 0.3257 

upp  

ns=10 0.2766 0.5395 0.9224 0.2920 0.5460 0.8239 

ns=50 0.2956 0.3701 0.4594 0.2805 0.3712 0.4903 

ns=100 0.2856 0.3484 0.4140 0.2919 0.3507 0.4254 

ns=500 0.2961 0.3191 0.3421 0.2954 0.3216 0.3472 

 

Table 2. Estimated Correlation Coefficient (100 Sample Sets) 

 Min. Mean Max. 

ns=10 -0.4667 0.4760 0.8667 

ns=50 0.2767 0.5017 0.6261 

ns=100 0.3665 0.5020 0.6319 

ns=500 0.4564 0.5016 0.5630 

 

For the comparison test, first, RBDO with the estimated standard deviations is carried out using 100 randomly 

generated data sets. Second, RBDO with the upper bounds of the input standard deviations obtained using 95% 

confidence level on the input model is carried out using the same data sets. Finally, PBDO is carried out using the 

estimated standard deviations. When RBDO is carried out, the MPP-based DRM is used for a more accurate result. Table 

3 compares the three test results with the MCS result.  

 

Table 3. Probability of Failure at Optimum Design (100 Sample Sets) 

 

PF2 ,%  PF3 ,% 

Average 

Cost 

No. of 

Design 

Failure 
Min. Mean Max. 

No. of 

Const.  

Failure 

Min. Mean Max. 

No. of 

Const.  

Failure 

RBDO 

with  

Estimated 

ns=10 0.1690 3.5447 23.6064 50 0.0074 3.9577 26.4990 51 -3.1920 59 

ns=50 0.4655 2.5461 6.1035 56 0.5294 2.5919 7.0129 54 -3.1507 64 

ns=100 0.7656 2.3012 4.2547 47 0.8114 2.3205 4.9048 46 -3.1201 54 

ns=500 1.5118 2.2199 3.1161 40 1.5065 2.2404 3.1172 41 -3.1211 45 

RBDO 

with 

Upper 

Bound  

ns=10 0.0000 0.3016 9.2656 3 0.0000 0.2228 10.9155 1 -1.7175 3 

ns=50 0.0408 0.8080 2.8207 4 0.0526 0.6693 2.8114 3 -2.6106 5 

ns=100 0.2205 1.0466 2.3313 2 0.2238 0.9173 2.3713 1 -2.7548 3 

ns=500 1.0264 1.6075 2.3745 1 0.9716 1.5398 2.2175 0 -2.9683 1 

PBDO 

ns=10 0.0000 0.9735 15.6695 10 0.0000 0.5674 10.3706 5 -2.3249 11 

ns=50 0.0093 0.3865 1.8642 0 0.0067 0.1723 0.9359 0 -2.2811 0 

ns=100 0.0398 0.3032 0.8663 0 0.0111 0.1261 0.3820 0 -2.2464 0 

ns=500 0.1180 0.2641 0.4942 0 0.0475 0.1134 0.1926 0 -2.2503 0 

 

As shown in Table 3, regardless of the number of samples, RBDO with the estimated standard deviation shows about 

50% probability of design failure, which means that the probability of failure of two constraints at the optimum design is 

larger than the target probability of failure (2.275%). In the table, ―No. of Failure‖ means the number of cases out of 100 

that the probability of failure for each constraint is larger than the target probability of failure, and ―No. of Design Failure‖ 

means the number of cases that any constraint fails.  

When the number of samples is 10 (ns=10), PBDO shows 11 design failures since there exist some cases in which the 

estimated standard deviations are too small compared to the true one, which is 0.3. As the number of samples increases, 

mean probability of failure for each constraint in PBDO decreases and is far from the target probability of failure, which 

results in no design failure. This means the optimum designs obtained using PBDO are not true optimum designs since the 

average cost of PBDO is much larger than the cost ( −3.1270) obtained using the true input information. Hence, in PBDO, 



 

 

the increased number of samples does not help improve the design optimization. 

On the other hand, RBDO with the upper bound of the input standard deviations consistently shows reliable optimum 

designs, which means that the number of design failure is about 5% or less, and the probability of failure at optimum 

design converges to the target probability of failure as the number of samples increases. In addition, average cost is much 

larger than the cost of PBDO while maintaining 5% or less design failure. Hence, RBDO with the upper bound of the 

input standard deviations provides a more stable and reliable optimum design than RBDO with the estimated standard 

deviations or PBDO. Furthermore, users can control the design optimization by changing the confidence level of the input 

standard deviations while others cannot. 

 

7.2. M1A1 Abrams Tank Roadarm 

The roadarm of the M1A1 tank [9] is used to compare MVDO and RBDO with confidence level on the input model 

for an engineering problem with insufficient data. The roadarm is modeled using 1572 eight-node isoparametric finite 

elements (SOLID45) and four beam elements (BEAM44) of ANSYS [30], as shown in Fig. 4, and is made of S4340 steel 

with Young’s modulus E=3.0×10
7
 psi and Poisson’s ratio ν=0.3. The durability analysis of the roadarm is carried out 

using Durability and Reliability Analysis Workspace (DRAW) [31,32] to obtain the fatigue life contour as shown in Fig. 

5. The fatigue lives at the critical nodes shown in Fig. 5 are chosen as the design constraints of the MVDO. 

 

 
Figure 4. Finite Element Model of Roadarm 

 

 

 

 
Figure 5. Fatigue Life Contour and Critical Nodes of Roadarm 

 

The shape design variables are shown in Fig. 6. Eight shape design variables characterize four cross-sectional shapes 

of the roadarm. The widths (x1-direction) of the cross-sectional shapes are defined by the design variables d1, d3, d5, and d7 

at intersections 1, 2, 3, and 4, respectively, and the heights (x3-direction) of the cross-sectional shapes are defined using 

the remaining four design variables. Eight shape design variables are listed in Table 4 and assumed to be independent 

random variables.  

 



 

 

 
Figure 6. Shape Design Variables for Roadarm 

 

Table 4. Random Variables and Fatigue Material Properties 

Random 

Variables 

Lower Bound 
L

d  

Initial 

Design 
0

d  

Upper 

Bound 
U

d  

Standard 

Deviation 

Distribution 

Type 

d1 1.3500 1.7500 2.1500 0.0525 Gaussian 

d2 2.6496 3.2496 3.7496 0.0975 Gaussian 

d3 1.3500 1.7500 2.1500 0.0525 Gaussian 

d4 2.5703 3.1703 3.6703 0.0951 Gaussian 

d5 1.3563 1.7563 2.1563 0.0525 Gaussian 

d6 2.4377 3.0377 3.5377 0.0911 Gaussian 

d7 1.3517 1.7517 2.1517 0.0525 Gaussian 

d8 2.5085 2.9085 3.4085 0.0873 Gaussian 

Fatigue Material Properties 

Non-design Uncertainties Mean 
Standard 

Deviation 

Distribution 

Type 

Fatigue Strength  

Coefficient, f   
177000 17700 Lognormal 

Fatigue Strength Exponent, b -0.0730 0.0073 Gaussian 

Fatigue Ductility  

Coefficient, f   
0.4100 0.0820 Lognormal 

Fatigue Ductility Exponent, c -0.6000 0.0600 Gaussian 

 

For the input fatigue material properties, since the statistical information on S4340 steel other than its nominal value 

is not available, it is necessary to assume the statistical information on S4340 steel. Strain-Life relationship is usually 

given by the classical Coffin-Manson equation as [33]  

(2 ) (2 )
2 2 2

p f b ce

f f fN N
E

 



                                                        (46) 

where f 
 
and b are the fatigue strength coefficient and exponent; f   and c are the fatigue ductility coefficient and 

exponent; Nf  is the fatigue initiation life; and E is the Young’s modulus. It is known that f  , b, and
 f  , c are highly 

negatively correlated [18,20,21]. Furthermore, it is also known that f   and
 f   follow the lognormal distribution and b 

and c follow the Gaussian distribution. Hence, in this paper, it is assumed that f   and b follow Gaussian copula with 

ρ=−0.828, and f   and c follow Frank copula with τ=−0.906. For the standard deviations of S4340 steel, 20% coefficients 

of variation (COV) for f   and 10% COV for other fatigue material properties are assumed. The assumed statistical 

information of the fatigue material properties are also presented in Table 4.  
To establish the design optimization for the roadarm, 30 samples are generated from the true marginal and joint 

distributions. Using 30 samples, the joint distributions are identified using the Bayesian method, and parameters for the 



 

 

identified distributions are quantified. Since the parameters are estimated using a limited number of samples (ns=30), it is 

not reliable to use the estimated parameters directly for the design optimization. Hence, they are treated as fuzzy variables 

for MVDO, or upper bounds of their standard deviations are used for RBDO with confidence level on the input model. 

The estimated mean (
e ), standard deviation (

e ), upper bound of the standard deviation (
U ), correlation coefficient 

(
e ), and identified copula using the Bayesian method are listed in Table 5.  

  

Table 5. Estimated Parameters and Identified Copula 

 f   b f   c 

e  176423 -0.07297 0.4181 -0.6107 

e  13816 0.005746 0.06164 0.04969 
U  18574 0.007724 0.08286 0.06681 

e  −0.8050 −0.9264 

Copula Gaussian Frank 

 

The MVDO and RBDO with confidence level on the input model for the roadarm can be formulated to 
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where 

Tar

Cost( ) : Weight of Roadarm
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and 
*

x  is obtained from the inverse analysis given by Eq. (36) for the MVDO and is obtained from the MPP-based DRM 

for the RBDO with confidence level on the input model. 

For comparison purposes, first, the MVDO is carried out using the estimated standard deviations for the fatigue 

material properties. Second, the RBDO with the estimated standard deviation and the upper bound of the standard 

deviation obtained using 95% confidence level on the input model is carried out. Finally, all these test results are 

compared with the results obtained from the RBDO with the true input statistical information. These results are shown in 

Table 6. 

 

Table 6. Optimum Design Comparison 

 Initial DO* MVDO 
RBDO  

UB** Estimated True 

d1 1.750 1.588 1.915 1.789 1.766 1.774 

d2 3.250 2.650 2.650 2.650 2.650 2.650 

d3 1.750 1.922 2.069 1.999 1.988 1.990 

d4 3.170 2.570 2.570 2.570 2.570 2.570 

d5 1.756 1.477 1.755 1.610 1.588 1.590 

d6 3.038 3.292 3.538 3.471 3.467 3.494 

d7 1.752 1.630 1.991 1.863 1.809 1.832 

d8 2.908 2.508 2.508 2.508 2.508 2.508 

Cost 515.09 464.56 509.87 491.06 487.07 488.79 

        *   deterministic optimum. 

        ** upper bound obtained using 95% confidence level. 

 

As shown in Table 6, the RBDO with the estimated parameters and identified copulas shows the unreliable optimum 

design compared with the cost obtained from the RBDO with the true input due to the underestimated standard deviations. 

Since MCS cannot be used for the benchmark test, the simple cost value comparison is used to determine whether or not 

the optimum design is more reliable. The cost of the MVDO is too large compared with the cost of the RBDO with the true 

input; thus, this optimum design is too conservative. However, the cost at the optimum design of the RBDO with 95% 



 

 

confidence level on the input model is larger than that of the true optimum; hence, it is reliable but not too conservative 

because it is very close to the true optimum. 

 

8. Discussions and Conclusion 

In many industrial engineering applications, it is not easy to obtain accurate input statistical information due to the 

expensive experimental cost. In such a case, it could be unreliable to use the estimated parameters from insufficient data 

for the design optimization. To assure a reliable design for problems with correlated input and lack of statistical 

information, this paper proposes and compares the RBDO with confidence level on the input model and the PBDO or 

MVDO.  

One mathematical example and one engineering example are used to compare two methods when insufficient data 

are available. The mathematical example shows that the PBDO could be unreliable when standard deviations are 

underestimated and the number of samples is very small; however, the optimum designs of PBDO are not true optimum 

when the number of samples is relatively large. On the other hand, the RBDO with confidence level on the input model 

yields reliable optimum designs in a consistent and stable manner. Furthermore, as the number of samples increases, the 

optimum design of the RBDO with confidence level on the input model converges to the optimum of the RBDO with the 

true input statistical model. 
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