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ABSTRACT 
   A level-set-based method for robust shape and topology 
optimization (RSTO) is proposed in this work with 
consideration of uncertainties that can be represented by 
random variables or random fields. Uncertainty, such as those 
associated with loading and material, is introduced into shape 
and topology optimization as a new dimension in addition to 
space and time, and the optimal geometry is sought in this 
extended space. The level-set-based RSTO problem is 
mathematically formulated by expressing the statistical 
moments of a response as functionals of geometric shapes and 
loading/material uncertainties. Spectral methods are employed 
for reducing the dimensionality in uncertainty representation 
and the Gauss-type quadrature formulae is used for uncertainty 
propagation. The latter strategy also helps transform the RSTO 
problem into a weighted summation of a series of deterministic 
topology optimization subproblems. The above-mentioned 
techniques are seamlessly integrated with level set methods for 
solving RSTO problems. The method proposed in this paper is 
generic, which is not limited to problems with random variable 
uncertainties, as usually reported in other existing work, but is 
applicable to general RSTO problems considering uncertainties 
with field variabilities. This characteristic uniquely 
distinguishes the proposed method from other existing 
approaches. Preliminary 2D and 3D results show that RSTO 
can lead to designs with different shapes and topologies and 
superior robustness compared to their deterministic 
counterparts.  

 
NOMENCLATURE 
( )1 2,C x x  spatial covariance function  

D  spatial domain 
ijklE  elastic tensor 

( ),g x ω  random field 

( )g x  mean function of ( ),g x ω  

( )ig x  or  ig the ith eigenfunction 
J objective functional 

( )p z  joint probability density function 
u  state variable 

( )xV  design velocity field 

iw  weight of the ith quadrature point 
φ  level set function 
λ  Lagrange multiplier 

iλ  the ith eigenvalue 

( )iξ ω  orthogonal random variables with zero 
mean and unit variance 

µ  mean performance 
2σ  performance variance 

z   random quantities 
Θ  sample space 
ω   an element of the sample spaceΘ  
Ω  geometric shape of the design 
∂Ω  boundary of  Ω

 
1. INTRODUCTION 
   Since the seminal work of Bendsøe and Kikuchi [1], 
structural topology optimization has undergone considerable 
developments during the past two decades, which provides an 
efficient way to obtain effective design candidates and greatly 
accelerates the engineering design innovation process. The 
underlying idea of topology optimization is to recast a design 
problem as an optimal material distribution problem, where an 
optimal configuration of the design is sought to optimize the 
design requirements measured quantitatively by an objective 
function. The state-of-the-art topology optimization approaches 
include the ground structure method [2], the homogenization 
method [1], the power-law approach [3] which is also called 
simple isotropic material with penalization (SIMP) [4, 5], and 
the level set methods [6-9]. Although topology optimization is 
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becoming a matured field, most of the current work is focused 
on deterministic optimization where the design is achieved 
without consideration of various sources of uncertainties, such 
as the variation in the loading, material properties, or geometric 
variations due to the imprecise manufacturing process. To 
obtain robust and reliable designs, the uncertainties existing in 
the structure and its operating environment need to be 
considered and their impact on design performance should be 
assessed quantitatively during a design process. Topology 
optimization under uncertainties is still an open research area 
which requires further investigations. The difficulties are 
attributed to the infinite-dimensional property of topology 
optimization, which poses great challenges in uncertainty 
quantification, propagation, and design sensitivity analysis.  
 

Recent years have seen growing interests in taking 
uncertainty into account to obtain robust and reliable topological 
designs. Due to its simplicity, frame structures were first studied 
for robust and reliability-based topology optimization under 
uncertainty, respectively [10-12]. Olhoff et al. first integrated 
reliability analysis into the element-based topology optimization 
method and introduced a new strategy called reliability-based 
topology optimization (RBTO) [13], where a probabilistic 
constraint is introduced, while the objective is treated as 
deterministic. Reliability-based topology optimization was 
further developed in recent years by different research groups 
[14-19].  A comprehensive review of RBTO can be found in 
[20]. On the other hand, not many works, except [12, 21, 22], 
exist on robust topology optimization (RTO), although it is a 
topic of great significance both in academic and industrial 
applications.  

 
Robust optimization problems have been addressed in 

different scientific disciplines [23]. The first approach is the 
method of stochastic programming [24] with its root in 
operations research; the second method is robust design [25], 
originating in engineering design. Among the existing RTO 
works, Seepersad et al. employed the frame structure method 
and the robust design approach to implement robust topology 
optimization of cell structures considering uncertain boundary 
conditions [12]. The limitation in the frame-structure based 
RTO method lies in the fact that the configuration of the optimal 
design is determined to a large extent by the number and 
locations of the nodes of the frame structure. If the number of 
nodes is limited, the solution may not be sufficient to represent 
the optimal topology. Using the homogenization method, 
Kogiso et al. [21] proposed a sensitivity-based RTO method for 
designing compliant mechanisms, where the effect of the 
variations in the direction of the input force on the output 
displacement is considered. The variations of the output 
displacement are evaluated using the first-order derivative. 
Conti’s work [22] is the first to combine level set methods with 
stochastic programming techniques for structural optimization 
under loading uncertainties. Different from Conti’s work, we 
solve RSTO problems by integrating the level set methods with 
the robust design formulation considering not only the random 
variable uncertainty, but also random field uncertainties. 
Conventional robust design optimization is usually set as a 
continuous optimization problem in finite dimensions. To 
combine robust design with shape and topology optimization, 
which is an infinite-dimensional optimization problem, we 

define the statistical moments of the response as functionals of 
geometric shapes and a set of random parameters reduced from 
random field. With the newly-introduced dimension of 
uncertainty, the optimal geometric shape is sought to 
simultaneously optimize the expectation of the design 
performance and minimize its variance. A basic issue to be 
addressed in RSTO is how to characterize the uncertainties and 
propagate them to the design responses in an efficient manner. 
In this paper, the spectral method [26], in particular, the 
Karhunen-Loeve expansion is employed to reduce the 
dimensionality in uncertainty representation.  After that, the 
statistical moments of design responses are evaluated using the 
generalized Gauss-type quadrature, and the shape sensitivity of 
the statistics is derived using the adjoint variable method. The 
shape derivative is further combined with a steepest descent 
method to form a design velocity filed for the level set equation 
to update the design solution in optimization iterations.  The 
level set methods offer a precise boundary description for 
implementing both the robust shape optimization and topology 
optimization in a unified mathematical framework, which is 
another advantage of the proposed method. 
 

This paper is organized as follows: A brief review of robust 
optimization and fundamentals about level set methods for 
RSTO are presented in Section 2. After that, uncertainty 
characterization and propagation using the spectral method and  
the Gauss-type quadrature will be introduced in Section 3. In 
Section 4, the shape derivatives of the statistical moments are 
derived using the adjoint variable method. The numerical 
algorithm for RSTO together with three demonstration examples 
are provided in Section 5. Conclusions and future works are 
discussed in the last section. 
  
2. LEVEL-SET BASED ROBUST SHAPE AND 
TOPOLOGY OPTIMIZATION (RSTO) 

 
2.1 Robust design models 

Conventional robust design, pioneered by Taguchi [27], refers 
to a class of methods for improving quality and reliability by 
designing a product or process so that it is robust (insensitive) 
against variations in uncontrollable noise variables [28-30]. The 
robust design problem typically involves a nonlinear 
programming formulation [25, 31-33] in which the objective is 
to make suitable tradeoff between ‘optimizing’ the mean 
performance µ  and minimizing the performance variance 2σ  
(or the standard deviationσ ), as shown in Figure 1.  

robustµ
 

FIGURE 1: ROBUST DESIGN MODEL [25]. 
The actual objective function to be minimized represents a 
designer’s preference in this tradeoff [34]. The common robust 
design objective function balances between the mean and 
variance of the objective response through the choice of the 
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constant c [35-40]. Functions of the form cµ σ+ also play a 
role when we have constraint responses that must satisfy certain 
conditions with specified probabilities. When the constraints 
relate to the failure of a product, the constraint evaluation is 
often referred to as reliability assessment [41-44]. For a more 
complete review on robust optimization, please be referred to 
literatures [20, 23, 25]. 
 
2.2 Level Set Methods for Shape and Topology 

Optimization 
Level set methods were originally introduced by Osher and 

Sethian [45] as a numerical scheme for tracking fronts 
propagating with curvature-dependent speed. In the past two 
decades, level set methods have thrived to be powerful tools 
with many applications in different fields [46, 47]. Their 
advantage lies in their capability of precisely describing closed 
boundaries with dynamic variations, which enables easy 
‘capture’ of the boundary on an Euler grid by solving a 
Hamilton-Jacobi partial differential equation [48]. Sethian and 
Wiengmann [49] first combined level set methods with the 
immersed interface methods for structural boundary design, 
where the former was used to represent the geometric boundary 
of the design and the latter was used for elastic analysis. Osher 
and Santosa [50] introduced the shape gradient of the objective 
functional into the level set model and established a link 
between the shape gradient and the velocity field. This work 
was further completed by Allaire et al. [7, 51], who derived the 
shape sensitivity of compliance and geometric advantage by 
employing the adjoint variable method. Starting from the 
material derivative method [9, 48], Wang et al. [48] identified a 
meaningful link between the velocity field in the level set 
method and the general structural sensitivity analysis. The ‘color 
level set’ model, which was also proposed by Wang [9], made 
possible the topology optimization of multi-material structures 
and compliant mechanisms in the level set framework [52-55]. 
To avoid being lost in technical details, in this section, we only 
focus on the key issues involved in RSTO. A complete 
introduction to level set methods can be found in [46, 47]. 

 
As its name implies, level set method implicitly represents 

the boundary as the zero level set of a one-higher dimensional 
surface ( )xφ , which is called the level set function. In the level 
set model, the domain is defined as three parts according to the 
value of the level set function: 

( )
( )
( )

( ) 0 : ( ) \
( ) 0 : ( )
( ) 0 : ( ) \

x t x t D
x t x t
x t x t

φ
φ
φ

⎧ > ∈
⎪ = ∈⎨
⎪ < ∈Ω⎩

Ω
∂Ω
∂Ω

,                  (1) 

where  denotes the design domain; and is time. The 
domain and a sketch of level set representation are shown in 
Figure 2. The greatest advantage of implicit representation lies 
in its ability of dealing with topological changes, such as 
splitting and merging of the boundary, in a natural manner. 

D t R+∈

 
By calculating the material derivative [56] of the 

equation , we get the following equation: ( ) 0xφ =

( ) 0x
t
φ φ∂
+∇ ⋅ =

∂
V ,                       (2) 

where ( ) dxx
dt

=V  is the velocity vector field. Considering 

φ
φ

∇
=
∇

n  and ( )φ φ⋅∇ = ⋅ ∇V V , we can write equation (2) 

as  

n

( ) 0nV x
t
φ φ∂
+ ∇ =

∂
.                      (3) 

 
(a) 3D level set function (b) corresponding 2D geometry

( ) 0xφ >

( ) 0xφ =

( ) 0xφ <

( ) 0xφ =
( ) 0xφ >

( ) 0xφ <

D

FIGURE 2: A 2D BOUNDARY EMBEDDED AS THE 
ZERO LEVEL SET OF A 3D LEVEL SET FUNCTION 

 
These two Hamilton-Jacobi type partial differential equations 
(PDEs) are the well-known level set equations [45-47]. Based 
on the level set theory, the topology optimization problem is 
transformed into a problem of finding the steady-state solution 
of the Hamilton-Jacobi equation. To get a feasible steady-state 
solution of equations (2) and (3), an important issue is to find 
the velocity field. More details on calculating the shape 
derivative and identifying the velocity field in the RSTO 
problem will be provided in Section 5.  
 
 
2.3 Setting an RSTO Problem  
   In probabilistic RSTO, uncertainty is introduced as a new 
dimension in addition to space and time [57], while the solution 
is sought in this extended space. Let’s use  to denote the 
random quantities, and assume is independent of the design 
variable shape

z
z

Ω . The design response (performance) under 
uncertainties can be correspondingly expressed as a 
functional ( , , )J u zΩ  of the random quantities  in addition to 
the geometric shape 

z
Ω  and state variable , that is  u

( )( , , ) ( , )J u z f u z d
Ω

Ω = Ω∫ Ω ,           (4) 

where the performance function ( , , )J u zΩ  is the total strain 
energy, or the mean compliance, of the structure in structural 
optimization; in complaint mechanism optimization, ( , , )J u zΩ  
is the geometric advantage/work efficiency. The 
random quantity considered here can have field variability to 
form a random field or random process but it can always be 
descretized into a finite number of random parameters, which 
will be further explained in Section 3.1. Thus equation (4) is 
general enough to cover random field or random process. 
 

The mean ( ( , , ))J u zµ Ω  and standard derivation 
( ( , , )J u zσ Ω of the response ( , , )J u zΩ in equation (4) can be 

further expressed as follows 
( )( )( ( , , )) ( ) , ( ) ( , , ) ,J u z p z f u z d dz p z J u z dzµ

Ω
Ω = Ω Ω = Ω∫∫ ∫    
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( )( ) ( )( )
( )

2

2

( ( , , ))

( ) ( ) , ( ) ,

( ) ( , , ) ( , , ) ,

Var J u z

p z p z f u z d p z f u z d dz dz

p z J u z J u z dzµ

Ω Ω

Ω

⎡= Ω Ω− Ω⎣

⎡ ⎤= Ω − Ω⎣ ⎦

∫ ∫ ∫∫

∫

⎤Ω ⎦

    (5)  
where  is the joint probability density function (p.d.f.) of 

the random variables. In this way, an RSTO problem is set as 
follows: 

( )p z

* ( , , ) ( ( , , )) ( ( , , )
:

,

,
obj

Minimize
J u z J u z c J u z

Subject to
Volume constraint

Perimeter constraint on

µ σΩ = Ω + Ω

Ω = Ω

∂Ω

  (6) 

together with the partial differential equations (PDEs) governing 
the physical system. 
 
3. UNCERTAINTY QUANTIFICATION AND 
PROPAGATION IN RSTO 
   Using the probability theory, uncertainties in structural 
optimization can be modeled either as random variables or 
random fields [58]. For example, when considering a 
concentrated random load, as shown in Figure 3(a), we can 
model its magnitude and direction as two random variables, 
either correlated or independent. However for problems with 
distributed loads with spatial variability in directions or 
magnitudes as shown in Figure 3(b) or a piece of material with 
properties varying across the spatial domain as shown in Figure 
8(b), the loadings and material properties should be more 
realistically modeled as random fields [58, 59]. Our research 
goal in this work is to develop a mathematically rigorous and 
computationally viable approach to RSTO problems under such 
uncertainties. 
 

To propagate uncertainty in a RSTO process, we propose to 
use the Gauss-type quadrature formula which is applicable to 
arbitrary probability distributions. The uncertainty modeled by a 
random field needs to be discretized into a finite number of 
random variables for practical manipulations. In this section, we 
first discuss the discretization of random fields using spectral 
representation and the propagation of uncertainty based on the 
Gauss-type quadrature formula. These methods are further 
incorporated into the framework of level-set based robust 
topology optimization. 

 
(a) a lumped random load (b) a random loading field
FIGURE 3: SKETCHES OF A LUMPED RANDOM LOAD 

AND A RANDOM LOADING FIELD 
 

 

3.1 Karhunen-Loeve Expansion of Random Field 
The Karhunen-Loeve expansion [60] is a spectral approach to 

represent a random field using eigenfunctions of the random 
field’s covariance function as expansion bases.  Let ( ),g x ω  
: D×Θ→ be a random field defined over a spatial domain 

, which is a function of spatial coordinate x. Here D ω∈Θ  
denotes an element of the sample space and is used to indicate 
that the involved quantity is random. ( ),g x ω  can be 
represented by the K-L expansion as follows: 

( ) ( ) ( ) ( )
1

, i i i
i

g x g x g xω λ ξ
∞

=

= +∑ ω ,         (7) 

where ( )g x  is the mean function. iλ  and ( )ig x  are the ith 
eigenvalue and eigenfunction obtained from the following 
integral equation: 

( ) ( ) ( )1 2 1 1 2, i i iC x x g x dx g xλ=∫D
,          (8) 

where ( )1 2,C x x  is the spatial covariance function of the 

random field ( ),g x ω .  The random field variables, ( )iξ ω  in 
Eqn. (7) are orthogonal random variables with zero mean and 
unit variance. That is,  

( )( ) ( ) ( )( )0  and i i jE E ijξ ω ξ ω ξ ω δ= = .          (9) 

The orthogonality of ( )iξ ω  is a unique feature of the K-L 

expansion. ( )iξ ω  can be calculated as: 

( ) ( ) ( )( ) ( )1 ,i iD
i

g x g x g x dξ ω ω
λ

= −∫ x    (10) 

The second order statistics of ( )iξ ω  in Eqn. (9) can be 
derived from Eqn. (10).  Based on sampling and spatial 
integration at the right side of Eqn. (10), samples of ( )iξ ω  
can be generated to infer the distribution of the random field 
variable, ( )iξ ω . The K-L expansion is the optimal among 
finite representations using orthogonormal bases in the sense 
that the mean square error caused by a truncation of the 
expansion is minimized [60]. 

 
When applying the K-L expansion to a discretized random 

field, operations on functions are transformed into operations on 
matrices [61]. A random field can be spatially discretized by the 
spatial averaging method or the collocation method [62]. Let 
( )ωg  denote an N dimensional random vector whose elements 

are random variables obtained by discretizing a random field 
( ),g x ω  at N observation points in the domain D.  The K-L 

expansion of ( )ωg  can be expressed as: 

( ) ( )
1

N

i i i
i

ω λ ξ ω
=

= +∑g g g ,                 (11) 

where g  denotes a vector containing the mean values of the 
random field g at the N observation points; iλ  and  are the 
eigenvalues and eigenvectors of the covariance matrix C; 

ig

( )iξ θ  are orthogonal random field variables with zero mean 
and unit variance. By truncating Eqn. (11) at some M N , a 
reduced order K-L representation of random field can be 
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obtained with its significance of representing the random field 
measured as:  

1 1

M N

i
i i

s iλ λ
= =

= ∑ ∑ .                    (12) 

When s is sufficiently close to one, a reduced order 
representation (Eqn. (11) with ) can be used to 
represent the random field with a much smaller dimensionality 
(M) without sacrificing too much of the accuracy.  The benefits 
of such reduction will be further demonstrated in our example 
problems. The procedure illustrated above can also be used to 
characterize a random field from data obtained at a finite 
number of observation points in a spatial domain [61].  

N M=

 
3.3 Multivariate Gauss-type Quadrature for statistical 
moments calculation 

Multivariate quadrature formulas for multiple random 
variables can be built from one dimensional quadrature formulas 
[59].  There are many ways of doing this [63] and in this paper, 
we focus our examination on two methods, the tensor product 
quadrature (TPQ) formula and the univariate dimension 
reduction (UDR) method. 
With the TPQ formula, the -th statistical moments of k ( )g X  
can be calculated as: 

  (13) 

( ){ } ( )

( ){ }
1

1

1 1

1

1

1 1 1
1 1

, ,

, ,

n

n

n n

n

kk
n

mm k

i i i n i
i i

E g g x x f d

w w g l l

Ω Ω

⋅ ⋅ ⋅ ⋅
= =

⎡ ⎤ =⎣ ⎦ ∫ ∫

∑ ∑

X x x

where  is the joint PDF of  and ,( )fX x X i jl ⋅ i jw ⋅  are the 
-th node and weight of the -th variable. ,  are the 

domain of integration and the number of nodes for -th 
variable, respectively. The total number of  evaluations is 

 .   

j i iΩ im
i

( )g x

1 2 nm m m× ×
The central moments can be calculated from the raw moments 

obtained by (13) or directly calculated as in (13) with ( )g x  

replaced by ( ) gg µ−x .  Expressions for the mean, standard 
deviation are as follows: 

(mean)  (
1

1 1
1

1 1
1 1

, ,
n

n
n

mm

)ng i n i i n
i i

w w g l lµ ⋅ ⋅ ⋅
= =

= ∑ ∑ i⋅

)

,           (14) 

(STD) ( )(1 2

1 1

1

1 2
2

1 1
1 1

, ,
n n

n

m m

g i n i i n i g
i i

w w g l lσ ⋅ ⋅ ⋅ ⋅
= =

⎡
= ⎢
⎢⎣
∑ ∑ µ

⎤
− ⎥

⎥⎦
,  

With the univariate dimension reduction (UDR) method [64], 
the multivariate function  is approximated by a sum of 
univariate functions which depend on only one variable with the 
other variables fixed to their mean values.  Let the univariate 
functions denoted by 

( )g X

_ ig , then  is approximated as 
follows: 

( )g X

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1
1

_
1

ˆ , , , , 1 , ,

1

n

i n
i

n

i i
i

g g g X n g

g X n g

1 nµ µ µ
=

=

= − −

= − −

∑

∑ X

X X

µ

µ
.

 (15) 

Here independence of iX  is assumed and it is known that the 
error of this approximation is mainly contributed from the 
interaction effects among variables [65].  Since iX  are 
mutually independent, ( )_ i ig X  are also independent with 

each other and the statistical moments of ( )ĝ X  can be 

approximated conveniently from moments of ( )_ i ig X , as 
follows [66]: 

(Mean) , (16) ( ) (
_ˆ

1
1

i

n

gg
i

n gµ µ
=

= − −∑ Xµ )

2(STD) 
_

2
ˆ

1
i

n

gg
i

σ σ
=

= ∑ ,             

The moments of univariate functions are calculated using one 
dimensional Gauss-type quadrature formula.  The number of 
( )g x  evaluations for this calculation is 1 1nm m+ + +  

where  is the number of nodes used for the calculation of 
moments of 

im

_ ig . The UDR method offers a much efficient 
approach than the TPQ method, however, the method might not 
be accurate when there exists strong interactions between 
random variables [67].   
 
4. SHAPE DERIVATIVES OF STATISTICAL MOMENTS 

 
To minimize the objective functional formulated in equation 

(6), we need to quantify the change of the objective 
functional * ( , , )J u ωΩ with respect to a small variation of the 
shape Ω  (design), which can provide us with necessary 
information for updating the current design. This process is 
called shape sensitivity analysis and the result is called shape 
derivative [68]. In this section, a semi-analytical shape 
sensitivity analysis approach is presented. The mean and 
variance of the response are first numerically discretized using 
the multivariate Gauss-type quadrature discussed in Section 3.3. 
From an optimization point of view, the multivariate Gauss-type 
quadrature essentially transforms the RTO problem into a 
weighted summation of a series of deterministic topology 
optimization subproblems. The shape sensitivity of each 
subproblem is then derived using the adjoint variable method 
and calculus of variation. 
 

Equations (6) can be approximated by using either the 
TPQ formula in equations (14) or the UDR formula in 
equations (15) and (16). For simplicity, we use the TPQ 
formula here as an example to illustrate how to derive the shape 
gradient of the statistical moments. Shape sensitivity analysis 
with UDR formula can be derived in a similar way.  

[ ]
1

2

1

( ( , , )) ( , , ),

( ( , , )) ( , , ) ,

n

i i
i

n

i i
i

J u w J u

Var J u w J u

µ ω ω

ω ω µ

=

=

Ω = Ω

Ω = Ω −

∑

∑
   (17) 

where iω  is a realization of the random variables,  is the 
corresponding weight to each quadrature point and is the 
number of quadrature points. We address the general problem 
using the variational method and the techniques proposed in [51, 
69, 70]. With the assumption that the random variables are 

iw
n
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independent of the design variables , the shape derivatives of 
the mean and variance of the performance function 

Ω
( , , )J u ωΩ  

can be expressed as follows: 
( ( , , )) ( ) ( , , ) .J u p J u dµ ω ω ωΩ ΩΩ = Ω∫ ω

i

         (18) 
Using the Gauss-type quadrature formula [67], equation (18) is 
numerically approximated by 

1

( ( , , )) ( , , ),
n

i
i

J u w J uµ ωΩ Ω
=

Ω = Ω∑ ω

⎫

            (19) 

Similarly, the shape derivative of the variance can be expressed 
as:  

( )
( )1

( ( , , ))

( , , ) ( , , )
2

( , , ) ( , , )

n i

i
i i

Var J u

J u J u
w

J u J u

ω

ω µ ω

ω µ ω

Ω

= Ω Ω

Ω

⎧⎡ ⎤Ω − Ω⎪⎣ ⎦ ⎪≈ ⎨ ⎬
⎡ ⎤Ω − Ω⎪ ⎪⎣ ⎦⎩ ⎭

∑              (20) 

The final shape derivative of the objective functional 
* ( , , )J u ωΩ  is 

( ) ({

*

1

1

( , , ) ( ( , , )) ( ( , , ))

( , , )
( ( , , ))

( , , ) ( , , ) ( , , ) ( , , )

n

i i
i

n

i i i
i

J u J u c J u
cw J u

J u

w J u J u J u J u

ω µ ω σ ω

ω
σ ω

ω µ ω ω µ ω

Ω Ω Ω

Ω
=

Ω Ω
=

Ω = Ω + Ω

= Ω + ⋅
Ω

⎡ ⎤ ⎡Ω − Ω Ω − Ω⎣ ⎦ ⎣

∑

∑ ) }⎤⎦
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1
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n

i i
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Ω
=

Ω Ω
= =

= Ω + ⋅
Ω

⎡ ⎤⎡ ⎤Ω − Ω Ω − Ω⎢ ⎥⎣ ⎦ ⎣ ⎦

∑

∑ ∑
(21) 

In this way, the shape sensitivity of * ( , , )J u ωΩ Ω  can be 
transformed into a weighted summation of the shape 
sensitivities of a series of deterministic scenarios. ( , , )iJ u ωΩ Ω  
reveals the underlying relations between the design variable 
shape  and the objective functional Ω ( , , )iJ u ωΩ  under a 
specified load scenario with the random parameter iω . In order 
to calculate equation (21), which is the shape derivative of the 
weighted summation of the expectation and variance of the 
performance function, we need to calculate the shape sensitivity 

( , , )iJ u ωΩ Ω  for each scenario with the random parameter iω . 
In this work, we consider a linear elastic system and take the 
structure compliance as the performance function ( , , )iJ u ωΩ . 
Since in each scenario the random parameter iω is a constant, we 
briefly write ( , , )iJ u ωΩ as ( , )J uΩ in the following derivation 
process. The compliance of the elastic system may be 
formulated as follows: 

( ) ( ) ( ), ijkl ij klJ u E u u dε ε
Ω

Ω = Ω∫ ,                 (22) 

At the same time, the system is subject to the linear equilibrium 
equation 

( ) ( ) ( ), ,W u v a u v l v= − 0= ,                     (23) 
Here 

( ) ( ) ( )1,
2 ijkl ij kla u v E u v dε ε

Ω
= ∫ Ω                   (24) 

describes the virtual work stored in the deformed system. Note 
that ( ),a u v is a symmetric bilinear functional [56], which 

means ( ),a u v  is linear both in displacement u  and virtual 

displacement , that is, v ( ) (,a u v a v u= ), . The functional 

( )l v fvd gvds
Ω Γ

= Ω +∫ ∫                         (25) 

describes the virtual work done by external load. ( )l v is a linear 
functional depending on loading ( )if ω and ( )ig ω , 
where ( )if ω is the body force and ( )ig ω  is the surface 
traction. Note that ( )if ω  and ( )ig ω depend on a realization of 
the random parameter iω . 

( ) ( ) ( ) (
( ) ( ) ( )

, , ,

, ,

L u v a u u a u v l v

a u u a u v l v

λ

λ λ

)⎡ ⎤= + −⎣ ⎦
= + −

.             (26) 

Since  is an arbitrary displacement field in the admissible 
displacement space, after being multiplied by a scalar

v
λ , vλ  

still falls into the same linear space. We can further simplify the 
above equation with only v : 
( ) ( ) ( ) (, , ,L u v a u u a u v l v= + − )                       (27) 

The weak form of the adjoint variable equation can be expressed 
as the derivative of functional  in the direction of L ψ , which 
may be described in an inner product form as follows: 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( )

0

0 0

, ,
, 0 lim

, , , ,
2 lim lim

2 , ,

, 2
2

L u v L u vL
u

a u u a u u a u v a u v

a u a v

a u v
v u

τ

τ τ

τψ
ψ

τ
τψ τψ

τ τ
ψ ψ

ψ

→

→ →

+ −∂
< >≡ ⇒
∂

+ − + −
= +

= +

= +

⇒ = −

 (28) 

Now we can get the shape derivative of the compliance 
( ),J uΩ  as follows: 

( ) ( ) ( )

( ) ( ) ( )

, , 2
,

, , 2
2 .

a u u W u u
J u L

a u u a u u l u

Ω Ω

∂ ∂ −
Ω = = +

∂Ω ∂Ω
∂ ∂ − ∂

= + +
∂Ω ∂Ω ∂Ω

            (29) 

Considering 
( ) ( ) ( )

, 1
2 ijkl ij n

a u v
E u v V dε ε

Γ

∂
=

∂Ω ∫ s ,            (30) 

we get 
( , ) 1 ( ) ( )

2 ijkl ij kl n
a u u E u u V dε ε

Γ

∂
=

∂Ω ∫ s ,                (31) 

( , 2 ) ( ) ( )ijkl ij kl n
a u u E u u V dε ε

Γ

∂ −
= −

∂Ω ∫ s .            (32) 

At the same time, we get the shape derivative of , using the 
result in classical shape optimization [68], that is, 

( )l u

( )
1

( )
N

n

g ul u
ng u V ds f uV ds

n
κ

Γ Γ

⎡ ⎤∂ ⋅∂
= + ⋅ + ⋅⎢ ⎥

∂Ω ∂⎢ ⎥⎣ ⎦
∫ ∫          (33) 

Substituting the results in equations (31), (32) and (33) into 
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equation (29), we get the final form of ( , , )iJ u ωΩ Ω  as follows 

( )
1

( , ) 2

1 ( ) ( )
2

N
n n

ijkl ij kl n

g u
J u g u V ds f uV ds

n

E u u V ds

κ

ε ε

Ω Γ Γ

Γ

⎧ ⎫⎡ ⎤∂ ⋅⎪ ⎪Ω = + ⋅ + ⋅⎢ ⎥⎨ ⎬
∂⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

−

∫ ∫

∫
.  (34) 

Since the body force  is not considered and the length of 
Neumann boundary is in fact zero (the force is applied at a 
point), in practical implementations only the last term in 
equation (34) is considered. Substituting equation (34) into 
equation (21), we get the shape gradient of the objective 
functional, which is denoted as follows:  

f

* ( , , ) ( ( , , )) ( ( , , ))J u J u c J uω µ ω σ ωΩ Ω ΩΩ = Ω + Ω . 
 

5. RSTO ALGORITHM AND DEMONSTRATION 
EXAMPLES 
5.1 Numerical Algorithm 

The algorithm for RSTO is shown in Figure 4. After setting 
the initial design and boundary conditions, the spectral methods 
introduced in Section 2 are first introduced to reduce the 
dimensionality for representing the uncertainties in loading and 
material.  For the reduced set of random variables, the 
locations and weights of nodes are determined next based on the 
Gauss-type quadrature for calculating the mean and variance of 
the performance function. The shape sensitivity is then 
calculated at each integration node.  Therefore, the 
computational cost is proportional to the number of nodes. The 
velocity field is set using the steepest descent method and the 
geometry is updated via Hamilton-Jacobi equation. This loop 
will iterate until the convergence criterion is satisfied.  
 
5.2 Demonstration Examples 

The proposed robust design procedure is first applied to an 
example with two non-normal random variables to verify the 
effectiveness and feasibility of the moment calculation based on 
the Gauss-type quadrature formula and the proposed design 
sensitivity analysis. After that, we apply the proposed method to 
design a 3D bridge beam with consideration of a random 
loading field in example 2 and a random material field in 
example 3. 

 
Example 1. A 2D Bridge Beam with a Random Load at 
Bottom 

The boundary condition of the bridge beam is shown in 
Figure 5. The design domain is defined within a 2-by-1 square 
with the lower left corner fixed and the lower right corner 
simply supported. A random external force is applied in the 
middle of the top. The angle of the random force takes a 
uniform distribution with the interval from π−  to 0 , and the 
magnitude takes a Gumbel distribution with the mean equal to 1 
and variance equal to 0.3. The design domain is discretized 
using 100-by-50 elements for elastic analysis. The elastic 
material is assumed with a dummy Young’s modulus of 

and the Poisson ratio of 0.3. The void area is assumed with 
a dummy Young’s modulus of 0.001 and the same Poisson ratio 
of 0.3. The settings in the deterministic optimization are the 
same as the robust optimization example, except that the force is 
a deterministic unit force in the vertical direction.  

E=1

 
FIGURE 4: FLOWCHART OF THE RSTO ALGORITHM 

 
In this example, a 25-point tensor product Gauss-type  

quadrature is used to calculate the mean and variance of the 
compliance at each design solution. By reducing the 
computational cost using the linear superposition theory, we are 
able to apply the Monte Carlo method with 10000 experiments 
to provide a standard reference. As shown in Figure 5, the 
topology of the robust topology design is different from that of 
the deterministic design. The performance and robustness of the 
robust and deterministic designs are compared in Table 1.  

 
TABLE 1. COMPARISON BETWEEN ROBUST AND 

DETERMINISTIC DESIGNS 
 Robust Deterministic

25-point tensor-
product quadrature 25.1155 36.8167 

E(C) Monte Caro 
(10000 points) 25.0632 37.0326 

25-point tensor-
product quadrature 17.4334 27.5360 

Std(C) Monte Caro 
(10000 points) 17.5861 27.1967 
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 Robust Design Deterministic Design 

Boundary 
conditions 

 

Initial  
design and  
level set 
function 

  

Optimal 
Designs 

  

Final level 
set 

functions 

  
FIGURE 5: ROBUST (LEFT COLUMN) V.S. 

DETERMINISTIC (RIGHT COLUMN) TOPOLOGY 
OPTIMIZATION OF A BEAM STRUCTURE  

 
Both the mean (25.0632) and variance (17.5861) of the 

robust topology design is much smaller (better) than that of the 
deterministic design (37.0326 and 27.1967 respectively), which 
means the robust topology design possesses a better 
performance and robustness to the deterministic design under 
the specified random loading condition. While most of the 
robust design problems involve the tradeoff between optimizing 
the mean performance and minimizing the performance 
variance, deterministic topology optimization problems only 
optimize the performance in a specific scenario (e.g, for a 
specific load magnitude and direction).  Because both the 
magnitude and direction of a load change, it is generally not true 
that the mean performance of the robust design solution must be 
worse than that from deterministic optimization. At the same 
time, it is noted from Table 1 that the results of 25-point tensor 
product Gauss-type quadrature are very close to those of the 
Monte Carlo method, with much improved efficiency.  
 
Example 2. A 3D Bridge Beam with a Random Loading 
Field at the Top 

In this example, we optimize a 3D bridge beam considering 
a random loading field on the top. The boundary conditions and 
initial designs are shown in Figure 6 (a) and (b). The dimensions 
of the design domain are 2-by-0.5-by-1 (X-by-Y-by-Z). The 
random loading field is assumed to take a normal distribution 
with mean equal to 1 and standard deviation equal to 0.2. The 
correlation length of the random load field is set to be 0.5. In the 
optimization process, the level set function is evolved on a 101-
by-26-by-51 Euler grid, where the design domain is discretized 
using about 4000 finite elements for elastic analysis. Three 
eigenvectors are used in uncertainty quantification and three 
quadrature nodes are used in the direction of each eigenvector. 

UDR is employed to calculate the stochastic moments, which 
reduces the finite element evaluation numbers from 27 to 7 in 
each optimization iteration. 

 
 

(a) 2D sketch of the 
boundary conditions, 

(b) initial design and 
loading condition, 

(c) Final design, (d) Isometric view from 
another viewpoint 

FIGURE 6: RSTO OF A 3D BRIDGE BEAM. 
 

 

(a) 2D sketch of the boundary 
conditions, 

(b) initial design and loading 
condition 

 
(c) Final design (d) Isometric view from 

another viewpoint 
FIGURE 7: DETERMINISTIC TOPOLOGY 
OPTIMIZATION OF A 3D BRIDGE BEAM. 

The finial design of RSTO is shown in Figure 6 (c) and (d). The 
corresponding deterministic result (DTO) is shown in Figure 7. 
Compared with the deterministic design, the robust design 
possesses two more ribs and a thickened beam at bottom, which 
can provide additional strength to the bridge under loading 
variations. A comparison of the mean and variance of the robust 
and deterministic designs are listed in Table 2. Again, the 
performance of a RSTO result is more robust than its 
deterministic counterpart, when subject to a random loading 
field.  
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TABLE 2. COMPARISON BETWEEN ROBUST AND 
DETERMINISTIC DESIGNS UNDER RANDOM 

LOADING FIELDS 
 Robust Deterministic 

E(C) 19.84 22.49 
Std(C) 4.64 5.24 
 

Example 3. A 3D Bridge Beam with a Random Material 
Field 

In this problem, a 3D bridge beam is optimized subject to a 
spatially-varying material property field across the design 
domain. The boundary condition of the problem is similar to 
that of example 1 and the dimensions of the design domain are 
the same as the setting of example 2. The material property field 
(Young’s Modulus) is assumed to take a normal distribution 
with mean equal to 1 and standard deviation 0.2. A realization 
of the random field is shown in Figure 8 (b). An exponential 
function is employed to describe the correlation between any 
two spatial points in the random field as follows: 

1 2exp
X X

C
d

⎛ ⎞−
= −⎜⎜

⎝ ⎠
⎟⎟ .          (35) 

Here 1 2X X−  is the Euclidean distance between the two 
points and d is the correlation length which is set to be 0.5 in 
this example. In the optimization process, the level set function 
is evolved on a 101-by-26-by-51 Euler grid, and the design 
domain is discretized using about 4000 finite elements for 
elastic analysis. Due to the strong correlation, three eigenvectors 
are used in uncertainty quantification and the random material 
field can be quantified as follows: 

( ) ( ) ( ) ( )
3

1

, i i i
i

g x g x g xω λ ξ
=

= +∑ ω .      (36) 

Three quadrature nodes are used in each eigenvector 
direction for demonstration. The final design of RSTO is shown 
in Figure 8 (c) and (d). The corresponding DTO results shown 
in Figure 8 (e) and (f), where the Young’s Modulus is a constant 
1.  

 
TABLE 3. PERFORMANCES OF ROBUST AND 

DETERMINISTIC DESIGNS UNDER DIFFERENT 
MATERIAL FIELDS 

 
We apply two different material fields to both the robust 

and the deterministic designs. The performances of robust and 
deterministic designs under different material fields are listed in 
Table 3.  Results in Table 3 show that both the performance of 
robust design is more stable than that of deterministic 
design. Compared with the deterministic design, the robust 
design possesses obviously thicker bars while the number of 
bars is less than that of its deterministic counterpart, making the 
appearance more robust. The increased thickness of the bars 

makes the robust design less sensitive to the variations in the 
material field. 
 

  
(a) Initial Design, (b) A realization of the 

random material field 

 

(c) Robust design 
(d) Isometric view of the 

robust design from another 
viewpoint 

 

(e) Deterministic design 
(f) Isometric view of the 

deterministic design from 
another viewpoint 

FIGURE 8: ROBUST (a-d) vs. DETERMINISTIC (e-f) 
OPTIZATION OF A 3D BRIDGE BEAM UNDER A 

RANDOM MATERIAL FIELD. 
 

 
6. CONCLUSIONS AND FUTURE WORK 

For the first time, robust design is integrated with level set 
methods to implement robust shape and topology optimization. 
The method presented in this paper is expected to provide a 
mathematically rigorous and computationally viable approach to 
RSTO problems. The Karhunen-Loeve expansion is employed 
to characterize random-filed uncertainty, which is essentially a 
spectral representation of the random field using a reduced set 
of random variables and the eigenfunctions of its covariance 
function as expansion bases. Once the reduced set of random 
variables is identified, either the tensor product quadrature rule 
or the univariate dimension-reduction (UDR) quadrature rule is 
then employed for calculating statistical moments of the design 
response. The combination of the above techniques not only 
provides a computationally viable approach in evaluating the 
statistical moments, which otherwise would be computationally 

 Parameters of 
Material Field Robust Deterministic 

Material 
Field 1 E=1 23.05 22.73 

Material 
Field 2 

1Eµ = , 
0.3,Eσ =  
0.5d =  

23.25 23.48 
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formidable, but also enables a semi-analytical approach that 
introduces the shape sensitivity of the statistical moments using 
the adjoint variable method and calculus of variation. The shape 
derivative is seamlessly integrated with a level-set-based 
topology optimization framework via the steepest descent 
method. The proposed RSTO method is illustrated with bench 
mark examples subject to lumped random loads and a random 
loading/material field. The benchmark examples show that the 
results from RSTO may be quite different from that of the 
deterministic topology optimization and the RSTO designs are 
more robust than deterministic designs under uncertainty. 
Throughout our research, we also had the following observation 
that uncertainty is not the only factor that has impact on the 
topology of the final design; the interaction between the 
boundary condition and the uncertainties determines the 
topology of the final design to a large extent (keeping other 
conditions fixed). These issues still needs further investigations 
in our future research.   
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