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1. Abstract  

Over three decades, metamodeling has been widely applied to design optimization problems to build a 

surrogate model of computation-intensive engineering models. The Kriging method has gained significant 

interests for developing the surrogate model. However, traditional Kriging methods, including the ordinary 

Kriging and the universal Kriging, use fixed polynomials basis functions to generate the mean structure. In this 

paper, a new Dynamic Kriging (D-Kriging) method is proposed to fit the true model more accurately. In this 

D-Kriging method, the mean structure is automatically decided by applying genetic algorithm based feature 

selection to the candidate basis functions based on a new accuracy criterion. In addition, a new sequential sampling 

technique based on the prediction interval of the surrogate model is proposed and integrated into the D-Kriging 

method. Numerical examples show much more accurate results from D-Kriging compared with traditional Kriging 

methods.  

 
2. Keywords: Response Surface Method (RSM), Kriging Method, Prediction Interval, Sequential Sampling 

Method, Dynamic Basis Selection, Genetic Algorithm. 

 

3. Introduction 

 Metamodeling has been widely used in engineering applications when a true experiment is not feasible or is 

extremely hard to obtain due to high computational cost. A surrogate model is desirable for representing the true 

model when only a limited number of experiments can be evaluated. Researchers have been investigating various 

methods for generating the surrogate model based on limited samples. A number of methods, such as the least 

square regression, moving least square regression and radial basis functions, have been developed in recent 

decades [1-6]. Recently, the Kriging method has gained large interest due to its capability of dealing with highly 

nonlinear model [7]. In the Kriging method, the response of the model is considered as two parts: the mean 

structure and the residue. The ordinary Kriging (O-Kriging) assumes this mean structure part is zero or a constant 

among the entire domain [8]. The universal Kriging (U-Kriging) usually considers the mean structure as first- or 

second-order polynomials, which are obtained from a generalized least square regression [9]. However, during the 

practical use of these methods, a problem has been discovered: neither the ordinary Kriging nor the universal 

Kriging maximally uses the information from the evaluated samples due to the fixed form of the mean structure. 

Therefore, a new method that can automatically adjust the mean structure and maximally use the information based 

on current samples is needed. Joseph [10] used a Bayesian framework to identify the mean structure for the Kriging 

method. In this paper, we propose a new method to automatically decide the mean structure of the Kriging model 

by applying a feature-selection process based on a new criterion. 

 Another crucial issue of metamodeling is the sampling strategy. The Latin hypercube sampling method (LHS) 

[11,12] has been applied in metamodeling. It tries to occupy the entire design domain most evenly and gain as 

much information about the true model as it can. However, it is not a problem-specified method, which means that 

no matter what the true response is, it always give us a similar sample profile that occupies the entire domain 

evenly. This could be a critical problem if the distribution of the nonlinear area is aggregating in particular part of 

the domain.  Another sampling technique, importance sampling [13], samples around the limit state area and 

predicts the response accurately around the limit state. This importance sampling method also only gives a good 

local surrogate model around the limit state area and usually does not represent the true model accurately enough in 
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other areas of the domain. A sequential sampling strategy is applied by Wang [14] and Jin et al [15] to identify the 

sample position in a sequential manner. In this paper, we propose a new sequential sampling strategy integrated 

with the proposed D-Kriging method. By coupling the sampling method with the D-Kriging method, the efficiency 

and accuracy can be significantly achieved. Mathematical examples show the promising results of the surrogate 

model constructed by this sequential-sampling-based Kriging method with dynamic basis selection. 

 

4. Kriging Method with Dynamic Basis Selection 

 

4.1 Kriging Method 

 The Kriging method has gained large interest for generating the response surface in recent years.  In the 

Kriging method, the outcomes are considered as a realization of a stochastic process and the predicted values are 

derived later by applying stochastic process theory. Consider n sample points: 
T

1 2[ , ,..., ]nX x x x with
m

i x R , 

and n responses
T

1 2[ ( ), ( ),..., ( )]ny y yY x x x  with ( )iy x R . In the Kriging method, the response at samples is 

considered as a summation of two parts as  

 Y Fβ e                                              (1) 

The first part of the right-hand side of Eq. (1), ,Fβ is considered as the mean structure of the response, where 

=[ ( ), 1,..., , 1,..., ]k if i n k K F x  is a ( )n K design matrix, and ( )kf x  represents user-defined basis functions, 

which are usually in a simple polynomial form, such as 21, , ,...x x . In Eq. (1), 
T

1 2[ , ,..., ]K  β are the regression 

coefficients from the generalized least squares regression method. The second part of Eq. (1),
T

1 2[ ( ), ( ),..., ( )]ne e ee x x x , is a realization of the stochastic process ( )e x  that is assumed to have zero mean and 

covariance structure 2[ ( ) ( )] ( , , )i j i je e RE x x θ x x , where 
2 is the process variance, θ is the process parameter 

which has to be estimated from sample data and ( , , )i jR θ x x is the correlation function of the stochastic process. 

For a multidimensional problem, it becomes the multiplication of the correlation functions for each dimension as

1

( , , ) ( , , ),
m

d d d

i j d i j

d

R R x x


θ x x where 
d

ix is the d
th

 component of
ix  and

d is the d
th

 component of θ . For example, 

if the process is assumed to be a stationary Gaussian process, then 2( , , ) exp( | | ).d d d d d d

d i j i jR x x x x     Another 

assumption of the model in Eq. (1) is, [ ( ), ( )] 0Cov e F x x ; that is, the residuals are uncorrelated with the basis 

functions. Under the general decomposition of Eq. (1), the objective is to predict the noise-free unbiased response 

at a new point of interest 0x . In the Kriging method, this prediction of response is written as a linear predictor as 

T

0 0ŷ (x ) w Y                           (2) 

where
T

0 1 0 2 0 0[ ( ), ( ),..., ( )]nw w ww x x x denotes the ( 1)n weight vector for prediction at
0x . Using Eq. (2), the 

unbiased prediction condition 0 0
ˆ[ ( )] [ ( )]y yE x E x  is expressed as 

T

0 0 0 0

T

0 0 0

T T T T

0 0 0 0

T T T

0 0

ˆ[ ] [ ]

[ ( ) ( ( ))]

[ ( ) ( ) ]

[( ) ]

y y y

e

e

  

   

   

  

E (x ) (x ) E w Y (x )

E w Fβ e f β x

E w e x F w f β

E F w f β 0

         (3) 

where   T

0 1 0 2 0 0[ ( ), ,..., ( )] .Kf f ff x x x  Therefore, the unbiased condition is ensured by imposing the constraint 

T T

0 0F w f on the prediction weights for each point of interest [16].  

 Under this constraint, 0w is obtained by solving 

00

T

0

    
     

     

rR F w

fF 0 λ
,                                        (4) 

which represents the Lagrangian first-order necessary conditions of minimizing the mean squared error (MSE) of 

the prediction [16], where λ represents the Lagrangian multipliers, R is the correlation matrix

( ) ( , , ), , 1,...,ij i jR R i j n θ x x , and 
T

0 1 0 0[ ( , , ),..., ( , , )]nR Rr θ x x θ x x is the correlation vector between the 

prediction location 0x  and all n samples , 1,...,i i nx .  The solution of Eq. (4) is given by 

T -1 -1 T -1

0 0

-1

0 0

( ) ( )

( )

 

 

λ F R F F R r f

w R r Fλ
                   (5) 

Hence the prediction is expressed as 



 

 

T T -1

0 0 0

T -1 T -1 T T -1 -1 T -1

0 0 0

T T

0 0

ˆ( ) ( )

( ) ( )

y   

  

 * *

x w Y r Fλ R Y

r R Y F R r f F R F F R Y

f β r γ

             (6) 

where 
T -1 -1 T -1( ) ,*

β = F R F F R Y  
* 1 *( ), γ R Y Fβ and the prediction error variance [17] is expressed as 

2 T T

0 0 0 0 0 0 0
ˆ( ) [ ( ) ( )] (1+ 2 )p y y    2

x Var x x w Rw w r       (7) 

Also, the sensitivity of the predicted response is given by 
T

T * T *

0 0 0

1

ˆ '( ) ,..., ( ) ( )f r

n

y y
y J J

x x

  
  

  
x x β x γ                 (8) 

where 0

0

( )
( ( )) i

f ij

j

f
J

x




x
x  and 0

0

( , , )
( ( )) i

r ij

j

R
J

x






θ x x
x are the Jacobians of 

0f  and 
0r , respectively [17]. 

 According to Eqs. (6) and (8), the function value and sensitivity of response are obtained as long as the 

correlation matrix ( , , )i jR θ x x is available. In this paper, ( )e x is assumed to be a Gaussian process, hence

2( , , ) exp( | | )d d d d d d

d i j i jR x x x x    . The optimum value of process parameter θ is defined as the maximum 

likelihood estimator (MLE), which is the maximizer of 
21

( ln ln | ( ) |),
2

n   R θ  and it is equivalent with the 

formulation as  
1

2is the minimizer of   ( ) | ( ) |n  θ θ R θ              (9) 

where the process variance
2 is estimated by 

2 * T *1
( ) ( )

n
   Y Fβ Y Fβ  [2]. Under the assumption of Gaussian 

process, the α-level prediction interval of response is written as 

0 (1 ) / 2 0 0 0 (1 ) / 2 0
늿( ) ( ) ( ) ( ) ( )p py Z y y Z      x x x x x                   (10) 

where 
(1 ) / 2Z 

 is the  -level quantile of standard normal distribution. Therefore, the bandwidth of the prediction 

interval at point of interest 
0x is 

0 (1 ) / 2 0( ) 2 ( )pd Z  x x                           (11) 

 

4.2 Feature Selection: Dynamic Regression Basis Selections 

In the universal Kriging method, the basis function ( )kf x  used in Eq. (1) is fixed along the entire 

metamodeling process, and usually it takes up to second order, i.e.,
2x . However, it is obvious that higher-order 

terms can catch up more nonlinear trend in the mean structure. Hence in many highly nonlinear cases, fixed-order 

basis functions are not enough to describe the nonlinearity of the mean structure. On the other hand, researchers 

also observe that in some cases the accuracy of the surrogate model may not be necessarily enhanced by 

introducing higher-order terms; more straightforwardly, the surrogate model may become even worse. Therefore, 

the problem becomes how to find the optimal set of these basis functions such that the surrogate model would be 

most accurate. It is clear that the global optimal subset of these candidate basis functions can be obtained only by 

applying the exhaustive algorithm. The number of total tests would be 2M , where M is the number of candidate 

basis functions. Consequently the computational expense may increase to become unaffordable. A common way of 

deciding which candidate basis functions should be included is called sequential feature selection [18]. However, 

we found out this sequential feature selection can easily hit the local optimum and therefore may not perform best 

for selection purpose. Therefore, we used another way of carrying out this selection process which is based on 

genetic algorithm for feature selection which was also used by Broadhurst for variable selection [19]. 

In this paper, all the candidate basis functions are simple polynomials and their multiplications, in the form of

1 2

1 2 ... , 1,2,...,ikk k

ix x x i D ,where D is the number of input variables, 0,1,..,ik P is the power of ix , 
1

n

i

i

k P


 , and  

P is the highest order of the mean structure in the current surrogate model.  The total number of possible candidate 

basis functions is
P

D PC  . Therefore, the full set of row vector of F in Eq. (1) becomes 

2 2 3 3 2 1

1 2 1 1 2 1 1 1 2 1 1 2 1
[1, , ,..., , ,..., , ,..., , ,..., , ,..., , ,...] P

D P

P P

D D D D D c
x x x x x x x x x x x x x x x x





 
        (12) 

Before applying the genetic algorithm based feature selection, a constraint must be satisfied. That is F cannot be 

underdetermined; i.e., the total number of possible candidate basis functions cannot be larger than the number of 

samples. This constraint also determines the highest order P by 



 

 

 

max{ }

. P

D PC

P

s t n

where n is the number of samples

                 (13) 

After finding the highest order P, F becomes an N ×
P

D PC  matrix. Then we apply the genetic algorithm for feature 

selection to F and decide which column (basis function) should be kept for the surrogate model. To carry out the 

genetic algorithm for feature selection, first we need an objective function to decide if the current subset is a good 

one or not. 

An objective function, called the criterion, which the method seeks to minimize over all feasible feature 

subsets. Usually this criterion is mean-squared-error (MSE) for regression models from a generalized least square 

(GLM) regression. However we found that the MSE from GLM is not suitable for the Kriging method. It may lead 

to a wrong selection in many cases, which means the surrogate model from the Kriging method becomes worse. To 

make the feature selection procedure compatible with the Kriging method, we propose a new criterion in this 

paper, which is defined as the average value of the ratio between the prediction interval bandwidth and the 

predicted response, given by 

1

( )1

ˆ| ( ) |

K
i

i i

d
C

K y

 
x

x
         (14) 

where K is the number of checking points 
ix . Usually the testing points are chosen from a K K  mesh of the 

entire design domain. To calculate this C criterion during the genetic generation process, we calculate the Kriging 

response based on the current selected subset by applying Eqs. (1) – (11).  It is obvious that this C criterion can also 

be used as the accuracy measure of the surrogate model in the design domain. Therefore, choosing C as the 

criterion for feature selection can make the feature selection result consistent with Kriging method for the surrogate 

model. Therefore, with this feature selection process, we can find a good subset, even if it may not be the best, for 

the Kriging method based on the current sample site. 

 

4.3 Sequential Sampling Technique 

We propose a sequential sampling technique using the bandwidth of the prediction interval determined by Eq. 

(11) to integrate it into the D-Kriging method for metamodeling purposes. First, the insertion criterion IC is defined 

as 

( )
( )

ˆ| ( ) |

d
IC

y


x
x

x
                         (15) 

The next sample point newx  is identified by 

max( ( )) , :IC Design Domainx x Ω Ω       (16) 

By defining IC as Eq. (15) and enforcing 
newx  to be the maximizer of Eq. (16), we are trying to find the ―weakest 

point‖ in the domain where we have the least confidence on the prediction.  

To demonstrate the process of this sequential sampling method, consider a 1-D problem expressed as 
5 4 3 2( ) 0.5 1.5 2.5 0.53 1.3 2.0y x x x x x x              (17) 

where x ∈ [1, 1]. The sequential sampling method is initiated with three evenly distributed samples shown as Fig. 

1(a). In the figures, the solid red line, the solid green line, and the two dashed black lines are the true response given 

by Eq. (17), the predicted surrogate model by Eq. (6), and the 95% prediction interval by Eq. (10), respectively. 

The black stars are the initial grid samples and the red star is the identified next inserted point within the domain. 

From Figs. 1(a)-(d), we can see that the bandwidth of the prediction interval keeps decreasing in fast speed and 

finally converges to the true response. A position where it has a large discrepancy between the true model and the 

surrogate model is identified during the iterations by applying the IC criterion.   

 



 

 

 
    (a) Initial Stage: 3 Samples     (b) After 1 More Samples Inserted 

 
  (c) After 3 More Samples Inserted     (d) After 5 More Samples Inserted 

 

Figure 1: Surrogate Model Using Sequential Sampling Method 

 

To assess the accuracy of the surrogate model, the error definition is given by the average of relative error 

within the domain as 

1

( )1

ˆ( )

K
i

i i

Err
K y





 
x

x
      

                        (18) 

where K is the number of checking points over the entire domain. Usually it takes a larger enough number, 10
4
 in 

this paper. With this accuracy of the surrogate model, we can eventually decide how many samples are needed to 

generate an accurate surrogate model. The sequential sampling process will be continued until it meets the 

accuracy tolerance Tol, given as 

1k k

k

Err Err
RErr Tol

Err

 
          (19) 

where 
kErr  is the error at the k

th
 iteration and RErr  is the relative error. Overall, the entire process of conducting 

this sequential-sampling-based D-Kriging (SS D-Kriging) is shown as in Fig. (2).  

 

5. Mathematical Examples 

 

5.1 Convergence Study 

The proposed sequential sampling method can achieve the accuracy faster than other sampling methods, such as 

grid sampling and Latin hypercube sampling. A 2-D profile example, which was used by Lee et al [20] as a highly 

nonlinear function for reliability-based design optimization, is given to demonstrate the fast convergence of this SS 

D-Kriging method. The true function is expressed as 
2 3

1 2 1 2 1 2

4

1 2 1 2

1 2

( , ) 1 (0.9063 0.4226 6) (0.9063 0.4226 6)

0.6 (0.9063 0.4226 6) ( 0.4226 0.9063 )

[5,9] [1,5.5]

y x x x x x x

x x x x

where x x

       

      

 

     (20) 

The SS D-Kriging method is initiated with five grid samples which are the red star points in Fig. (3). In the figures, 

the solid red line and the solid green line are the contour of the surrogate model and the contour of  true response at 

( ) 0Y X given by Eq. (20), respectively. The green star point is the identified next inserting point. The blue star 

points are the sequentially inserted samples. The numbers next to the stars are the sequence of the inserted samples. 
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To assess the accuracy of the surrogate model, the MSE of the entire domain is calculated as the error measure, 

which is defined as 

2

1

1
ˆ( ( ) ( ))

K

i i

i

MSE y x y x
K 

         (21) 

and K is the number of the checking points which are grid samples evenly distributed over the entire domain. In this 

case, K equals to 100×100 = 10
4
. 

           
 

Figure 2: Entire Process of Sequential-Sampling-Based D-Kriging for Metamodeling 

 

              
           (a) 12 Samples MSE = 23.25         (b) 13 Samples MSE = 3.65 

 

                             
  (c) 14 Samples MSE = 1.13          (d) 15 Samples MSE = 4.25E-27 

 

Figure 3: Demonstration of Fast Convergence of SS D-Kriging Method 



 

 

To show the comparison between the sequential sampling and Latin hypercube sampling with different 

Kriging methods, a convergence study is conducted. Since Latin hypercube sampling provides a different sample 

profile each time, 500 trials of Latin hypercube sampling are conducted, and the max, min, mean and median value 

of MSE from the surrogate models are calculated for comparison purposes. The overall convergence speed 

comparison is shown in Fig. (4). The SS D-Kriging converges faster than U-Kriging or D-Kriging with Latin 

hypercube sampling in the statistical sense. In details, we can see from Table.1 that, when the sample size is small 

(less than 10), the Latin hypercube gives a better surrogate model because it evenly distributes the samples over the 

entire domain and can have a relatively accurate result, but none of these results is acceptable since MSE is still 

larger than 100. When the sample size increases, the sequential sampling starts to work better because it identifies 

the ―weak‖ region in the domain and increases the fidelity of the surrogate model by inserting samples in the weak 

region. Finally it converges to a very accurate result in faster speed than the other two methods. Moreover, when 

the sample size increases to 15, the number of cases in which MSE from SS D-Kriging is smaller than MSE of LHS 

with U-Kriging is 373 out of 500 trials; the number of cases in which MSE from SS D-Kriging is smaller than MSE 

of LHS with D-Kriging is 322 out of 500 trials. Both results show that sequential sampling works better than Latin 

hypercube sampling no matter which Kriging method is used. 

 

 
 

Figure 4: Convergence Study of SS D-Kriging Method 

 

Table 1: Convergence Study of Sequential Sampling Method (MSE) 

 

Methods 
Number of Samples 

6 7 8 9 10 11 12 13 14 15 

L
H

S
 U

-K
ri

g
in

g
 Min 55.1 49.9 44.8 37.1 11.3 5.9 2.2 1.6 0.9 0.45 

Max 1.4E6 9.4E3 1.7E3 2.3E2 1.8E2 2.5E2 1.6E2 1.6E2 1.5E2 1.5E2 

Mean 2.0E4 3.2E2 1.3E2 1.1E2 79.1 68.3 55.4 38.4 31.1 17.6 

Median 1.3E2 1.2E2 1.1E2 79.4 69.7 65.1 52.2 23.9 13.4 3.8 

D
-K

ri
g

in
g
 Min 52.1 48.7 42.6 27.9 21.3 5.8 2.6 1.5 0.3 4.3E-28 

Max 7.4E5 4.9E3 1.3E4 2.3E3 1.2E3 2.4E2 1.5E2 1.3E2 3.9E2 1.4E-10 

Mean 1.4E4 3.1E2 4.8E2 95.2 90.5 72.1 39.6 22.1 18.4 5.4E-12 

Median 1.6E2 98.6 92.2 86.1 77.7 62.3 31.3 11.2 9.5 5.6E-26 

SS D-Kriging 7.1E2 5.5E2 4.5E2 4.4E2 1.1E2 21.6 23.3 3.7 1.1 4.3E-27 

 

5.2 Coupling Effect of the Sequential Sampling Technique with the Kriging Methods 

In practical cases, we also noticed that the improvement of the accuracy of the surrogate model is affected by 

the coupling effect from the combination of the sampling method and the metamodeling methods. Different 

Kriging methods will provide different sample profiles in the end and essentially will give quite different surrogate 

models. Combining the sequential sampling with the D-Kriging method provides the best final result. To 

demonstrate this effect, a more complex 2-D mathematical example is given to compare the accuracy of D-Kriging 

and U-Kriging when different sampling strategies are applied. This example is so called Brian function which has 

been widely used as a benchmark problem for surrogate modeling purposes [21]. The Brian function is given as 

2 2

1 2 2 1 1 1 1 22

5.1 5 1
( , ) ( 6) 10(1 )cos( ) 10 5 10, 0 15

84
f x x x x x x x x

 
              (22) 

The total sample size is 20 with 5 (2×2+1) initial grid samples. Four tests are given as follows: 



 

 

Case.1 The SS D-Kriging is first applied to generate the final contours of the surrogate model and the   

  20-sample profile, defined as Profile-1.  

Case.2 Then the U-Kriging is also applied to the sample Profile-1.  

Case.3 The U-Kriging is applied again to the sample profiles from Latin hypercube sampling (100 trials)  

  and the best result is chosen. 

Case.4 Finally, the sequential-sampling-based universal Kriging is applied with five initial grid samples.  

 Figures 5(a)-(d) show the comparison results. 

 

     
        (a) SS D-Kriging MSE = 0.055               (b) U-Kriging using Profile-1 MSE = 94.67 

 

     
   (c) U-Kriging w/LHS MSE = 6.82 (best of 100 trials)                   (d) SS U-Kriging MSE = 0.41 

 

Figure 5: Comparison between SS D-Kriging, U-Kriging and SS U-Kriging 

 

From Figs. 5(a) and (b) we can see that if the metamodeling process is driven by SS D-Kriging from the very 

beginning, it gives us a very promising result in the end, showing that the MSE is as low as 0.055. If U-Kriging is 

applied to the samples from SS D-Kriging (Profile-1 in this case), even if the samples are the same, the final result 

could be totally different (MSE=94.67), or significantly wrong. A more common case is using U-Kriging with 

Latin hypercube sampling, shown in Fig. 5(c); the best result out of 100 trials is better than case 2. Finally, from 

Fig. 5(d), if the metamodeling process is initiated with SS U-Kriging from the beginning, it could still give a good 

result in the end (the MSE is 0.41). Overall, both the sequential sampling method and the D-Kriging method 

contribute to the improvement of the accuracy of the surrogate model and the best result is achieved by combining 

them. In addition, we also need to be aware that it might be dangerous to apply U-Kriging to the sample profile 

from SS D-Kriging.  

 

6. Conclusion 

Metamodeling is widely applied for engineering application to represent the computation-intensive model. 

The traditional universal Kriging method has some limitations because of the fixed order of regression basis 

functions for the mean structure. We proposed a new method to automatically decide the regression basis functions 

by applying an genetic algorithm based feature selection algorithm to the candidate basis functions. An adaptive 

higher-order regression basis subset is obtained and leads to a more accurate surrogate model in the end. The 

sampling method is also a crucial issue in metamodeling. To be integrated with the D-Kriging method, a 



 

 

prediction-bandwidth-based sequential sampling method is proposed. It identifies the position that has the least 

confidence of the prediction accuracy and inserts a new sample there accordingly.  Mathematical examples show a 

faster convergence speed of the sequential sampling method compared with Latin hypercube sampling in a 

statistical sense. Moreover, the coupling effect reveals that this sequential sampling method is strongly connected 

with the Kriging method. Different Kriging methods will lead to different sample profiles. The 

sequential-sampling-based D-Kriging method yields the best result of the surrogate model in terms of accuracy and 

efficiency. 
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