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1. Abstract  
A deterministic optimization does not account for the uncertainties in the design variables and 
parameters. Modern competitive market demands have required the designers to introduce 
techniques for obtaining optimized designs that are also reliable. In the past twenty-five years, 
researchers have proposed a variety of methods to obtain optimum and reliable designs. These 
methods are addressed in Reliability-Based Design Optimization (RBDO). There are various 
types of RBDO approaches: Double-Loop methods, Decoupled methods and Single-Loop 
methods. This paper studies the efficiency of the various RBDO approaches applied to 
problems with dependent non-normal random input variables. Usually, the joint cumulative 
distribution function of this random vector is seldom available. In practice, it is further 
recognized that a general random vector could only be characterized reliably up to the marginal 
distributions and a measure of dependence between such as the popular linear correlation 
matrix. However, such limited information could not be enough to defined uniquely a general 
random vector. 
First Order Reliability Method (FORM) is the most widely used method for reliability analysis. 
This method usually requires a iso-probabilistic transformation from the dependent non normal 
input random variables in the original space to standard normal random variables in the 
standard space. Since only marginal distributions and the linear correlation matrix are available 
to define the input random vector, the Nataf transformation is often the first choice. Recently, 
Nataf transformation has been considered from the copula viewpoint because it is the 
composition of two functions: the Gaussian copula and a linear transformation. The Gaussian 
copula accurately constructs a joint cumulative distribution function for several types of 
dependent random vectors when the marginal distributions and the linear correlation matrix are 
available. Since this information could be obtained from real data, Nataf transformation could 
be used in many practical RBDO applications. However, using a Gaussian copula and, 
therefore, a linear correlation matrix to model a general random vector might generate several 
pitfalls and difficulties. 
A structural design example with dependent loads is provided in this paper to show the practical 
applicability of the Nataf transformation in RBDO. Several RBDO approaches are considered. 
The numerical efficiency and convergence are checked. The computational cost is assessed by 
the amount of optimization iterations and the total of performance functions evaluations. 
 
2. Keywords: Structural Reliability, Reliability Based Design Optimization, Nataf 
Transformation, Copulas, Correlated random variables 
 
3. Introduction 
Design optimization has undergone a substantial progress. Commercial finite element codes 
have added optimization methods. However, most of these developments deals only with 
deterministic parameters. Uncertainties need to be considered in the design of any engineering 
system to assure reliability and quality. Traditional deterministic design methods have 
accounted for uncertainties through empirical safety factors. However, such safety factors do 
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not provide a quantitative measure of the safety margin in design and are not quantitatively 
linked to the influence of different design variables and their uncertainties on the overall system 
performance. For a rational design to be made it is crucial to account for uncertain properties of 
material, loading and geometry as well as the mathematical model of the system. Also, any type 
of dependence or correlation between these uncertainties must be accounted for. The process of 
design optimization enhanced by the addition of reliability constraints is referred to as 
reliability-based design optimization (RBDO).  
The aim of RBDO is to achieve optimal objective while ensuring adequate reliability. There are 
various RBDO methods. They are related to different formulations for the objective function 
and the reliability constraints. Objective function is a measure that we want to minimize and 
can be chosen between these types: weight of the structure, life-cycle cost of a product, 
probability of failure. Reliability constrains can include requirements about the probability of 
failure of individual components as well as the probability of failure of the entire system. 
However, the most widely used RBDO formulation contains an objective function of the type 
minimization of the weight subject to component level reliability constraints. This formulation 
is stated in the section 4. During the last twenty five years several RBDO approaches have been 
proposed. The main challenge of researchers is to obtain efficient and robust methods to avoid 
the high computational cost and convergence difficulties of the early methods.  Several 
proposed methods are briefly described in section 5. 
An important property of any RBDO method is generality, that is, it has to address a wide range 
of problems including analytical problems, structural problems and large scale engineering 
design problems. Also, an efficient RBDO method has to solve problems with several types of 
variables: deterministic design variables, random design variables, and other deterministic and 
random system variables. Frequently, in many engineering applications two input random 
variables are related. For example, material properties and fatigue properties are correlated [1]. 
Therefore, correlated input variables must be accounted in RBDO approaches and this paper 
studies their efficiency. If a RBDO method applies the First Order Reliability Method (FORM) 
to evaluate reliability constraints, correlated non normal input random variables in the original 
space are converted to uncorrelated standard normal random variables. Nataf transformation is 
the more widely implemented model to carry out this task. Recently, Nataf transformation has 
been reviewed from the copula viewpoint. Nataf transformation uses the Gaussian copula to 
obtain a joint distribution for correlated random variables if their marginal distributions and 
linear correlation matrix are known. Nataf transformation, therefore, inherits the advantages 
and drawbacks of the Gaussian copula. These subjects are studied in section 6. The classic ten 
bar truss problem shows the applicability of the Nataf transformation in RBDO in section 7. 
Results are verified by Importance Sampling Monte Carlo Simulation (MCS). Finally, section 8 
includes the conclusions.  
 
4. Formulation of the RBDO problem 
A typical RBDO problem is formulated as 
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where kR∈d  is the vector of deterministic design variables, mR∈X  is the vector of random 
design variables, qR∈P  is the vector of random parameters, ( )⋅f  is the objective function, n is 
the number of constraints, k  is the number of deterministic design variables, m  is the number 
or random design variables and q  is the number of random parameters, fiP  is the probability of 
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violating the i-th probabilistic constraint and tfiP  is the target probability of failure for the i-th 

probabilistic constraint. 
 
If the First Order Reliability Method (FORM) is used, as usually occurs in practical 
applications, the failure probability fP  of a probabilistic constraint is given as a function of the 

reliability index β , written as: 

 ( )β−≈ ΦΦΦΦfP  (2) 

where ( )⋅ΦΦΦΦ  is the standard Gaussian cumulated distribution function and β  is the reliability 
index defined by Hasofer and Lind (1974), which is evaluated by solving the constrained 
optimization problem: 
 ( )
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The solution of this optimization problem ∗u  is the minimum distance of a point u  on the 
failure surface ( ) 0, =udG  from the origin of the standard normal space U  and is called the 

Most Probable Point (MPP) or β -point, as ∗= uβ . A probabilistic transformation 

( )PXU ,T=  from the original space of physical random variables ( )PX,  to the normalized 

space U  is needed. The image of a performance function  ( )PXd ,,ig  

is ( )udPXd ,)),(,( ii GTG = . In subsequent sections this transformation will be explained.  

The optimization process of Eq. (1) is carried out in the space of the design parameters( )Xµd, . 
In parallel, the solution of the reliability problem of Eq. (3) is performed in the space of the 
random variables.   
Traditional RBDO requires a double loop iteration procedure, where reliability analysis is 
carried out in the inner loop for each change in the design variables, in order to evaluate the 
reliability constraints. The computational time for this procedure is extremely high due to the 
multiplication of the number of iterations in both outer loop and reliability assessment loop, 
involving a very high number of mechanical analyses. 
 
5.  RBDO approaches 
Due to the prohibitive computational effort of the traditional double loop RBDO method, 
researchers have developed several approaches to solve the numerical difficulties. Below, they 
are briefly described: 
 
5.1 Double-loop Approaches 
These RBDO formulations are based on improvements of the traditional double-loop approach 
by increasing the efficiency of the reliability analysis. Two approaches have been proposed to 
deal with probabilistic constraints in the double-loop formulation: Reliability Index Approach 
(RIA) and Performance Measure Approach (PMA). 
RIA based RBDO is the traditional or classic RBDO formulation. The RBDO problem is solved 
in two spaces: the spaces of design variables, corresponding to a deterministic physical space 
and the space of Gaussian random variables, obtained by probabilistic transformation of the 
random physical variables. The RIA based RBDO problem is stated as: 
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where iβ  is the reliability index of the i-th probabilistic constraint for the structure and t
iβ is 

the target or allowed reliability index.  The calculation of the reliability index iβ  involves 
solving the optimization problem stated as Eq.(3). Both, standard nonlinear constrained 
optimization methods and FORM methods like the Hasofer-Lind-Rackwitz-Fiesler (HLRF) 
method or the improved-HLRF method can be used. 
The solution of this RBDO problem consists in solving the two nested optimization problems. 
For each new set of the design parameters, the reliability analysis is performed in order to get 
the new MPP, corresponding to a given reliability level. It is well established in the literature 
that RIA-RBDO converges slowly, or provides inaccurate results or even fails to converge due 
to the highly non linear transformations involved.   
Lee and Kwak [2] and Tu et al. [3] proposed the use of a Performance Measure Approach 
instead of the widely used RIA. In PMA, inverse reliability analysis is performed to search for a 
point with the lowest positive performance function value on a hypersurface determined by the 
target reliability index tβ . Since the inverse reliability analysis is also performed iteratively, the 
reliability analysis and optimization loops are still nested.  
The PMA-based RBDO problem is stated as  
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where the performance measure pG  is obtained from the following reliability minimisation 

problem:  
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The computational expense due to the nesting of design optimization and reliability analysis 
loops makes traditional RBDO impractical for large realistic problems. Various techniques 
have been proposed to improve the efficiency of RBDO.  Some techniques improve the 
efficiency of reliability analysis in the double loop formulations. Other techniques decouple the 
design optimization and the reliability analysis. There are also techniques by which these 
design optimization and reliability analysis are carried out in one loop.   
 
5.2 Improvements of reliability analysis in double-loop formulations. 
PMA-based RBDO is shown to be more efficient and robust than RIA-based RBDO, because 
performance measure methods do not obtain the exact value of the probability of failure for 
each inner loop and this implies that computational cost decreases. However, several numerical 
examples using PMA show inefficiency and instability in the assessment of probabilistic 
constraints during the RBDO process. B.D. Youn et al [4], [5], [6] have carried out some 
PMA-based methods that are more efficient that Advanced Mean Value (AMV) method. These 
methods are Hybrid Mean Value (HMV) method [4], Enhanced Hybrid Mean Value (HMV+) 
method [5] and Enriched Performance Measure Approach (PMA+) [6] and are briefly 
described here. HMV is a combination of the Advance Mean Value and the Conjugate Mean 
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Value methods and provides accurate results for concave and convex nonlinear reliability 
constraints. However, although the HMV method performs well for convex or concave 
performance functions, it could fail to converge for highly nonlinear performance functions. An 
enhanced HMV method, named HMV+ was proposed by B.D. Youn et al [5]. This method 
improves numerical efficiency and stability substantially in reliability analysis for highly 
nonlinear performance functions. This method introduces an interpolation search to improve 
the inverse reliability MPP search. PMA+ is an enriched PMA enhancing numerical efficiency 
while maintaining stability in the RBDO process. PMA+ integrates three key ideas, in addition 
to the HMV+ method: launching RBDO at a deterministic optimum design, feasibility checks 
for probabilistic constraints and fast reliability analysis under the condition of design closeness. 
 
5.3 Decoupled Methods or Sequential Methods.  
In these RBDO approaches the optimization problem and the reliability assessment are 
decoupled and are carried out sequentially. The reliability constraints are replaced by 
equivalent deterministic (or pseudo-deterministic) constraints, involving some additional 
simplifications. 
Du and Chen [7] proposed a sequential optimization and reliability assessment (SORA) 
method. This method employs a decoupled strategy where a series of cycles of optimization and 
reliability assessment is employed. In each cycle, design optimization and reliability 
assessment are decoupled from each other; no reliability assessment is required within the 
optimization and the reliability assessment in only conducted after the optimization. The key 
concept is to use the reliability information obtained in the previous cycle to shift the 
boundaries of the violated deterministic constraints (with low reliability) to the feasible region. 
Therefore, the design is improved from cycle to cycle and the computation efficiency is 
improved significantly. 
  
5.4 Single loop approaches  
These RBDO approaches collapse the optimization and the reliability problems within a 
single-loop dealing with both design and random variables. Both RIA- and PMA-based 
single-loop strategies have been developed. [8], [9], [10]. 
The single-loop single-vector (SLSV) approach [8], [11] provides the first attempt in a truly 
single-loop approach. It improves the RBDO computational efficiency by eliminating the inner 
reliability loops. However, it requires a probabilistic active set strategy for identifying the 
active constraints, which may hinder its practicality.  
Other single-level RBDO algorithms have also been reported in Argarwal et al. [12], Kuschel 
and Rackwitz [9] and Streicher and Rackwitz [13]. These methods introduce the 
Karush-Kuhn-Tucker (KKT) optimality conditions at the optimums of the inner optimization 
loops as equality constraints in the outer design optimization loop. This helps to adopt a 
well-known strategy for effectiveness in optimization, i.e., satisfying the constraints only at the 
optimum and allowing the solution to be infeasible before convergence. However, these RBDO 
methods based on KKT conditions have a great drawback: the number of design variables 
increases and becomes the sum of the original design variables, the components of the MPP in 
standard normal space for each reliability constraints  and the Lagrange multipliers for each 
optimization sub problem. This can increase the computational cost substantially, especially for 
practical problems with a large number of design variables and a large number of constraints. 
Furthermore, the approach in [9], [12] and [13] requires second-order derivatives which are 
computationally costly and difficult to calculate accurately. 
Liang et al [14] have development a single-loop RBDO formulation. This method has a main 
advantage: it eliminates the repeated reliability loops without increasing the number of design 
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variables or adding equality constraints. It does not require second-order derivatives. The KKT 
optimality conditions of the inner reliability loops are explicitly used to move from the standard 
normal U space to the original X space, where the inequality constraints of the outer design 
optimization loop are evaluated. It converts the probabilistic optimization formulation into a 
deterministic optimization formulation.  This method estimates the MPP for each probabilistic 
constraint using gradient information from the previous iteration. It therefore, eliminates the 
reliability optimization loop of the conventional double-loop RBDO approach.  
 
6 Applicability of RBDO approaches for dependent input variables 
Generality refers here to applicability for different types of problems. A RBDO approach must 
solve different types of problems: analytical or mathematical problems, engineering problems 
represented analytically, structural problems which require calling to a FEA tool and large scale 
problems. If the number of design variables or probabilistic constraints is very high, an 
approximate or surrogate model could be obtained through response surface or adaptive 
response surface methods. Then, a RBDO approach could be applied to this approximate 
model. 
A fundamental aspect is the type of random input variables allowed. This paper studies RBDO 
approaches applied to a wide range of problems with dependent input random variables. When 
FORM-based RBDO approaches are used, a probabilistic transformation from the non-normal 
correlated input random variables space X  into uncorrelated standard normal variables at the 
normalized space U must be incorporated.  Rosenblatt transformation [15] and the Nataf 
transformation [16] are the most representative transformations for correlated input variables. 
The Rosenblatt transformation requires the joint Cumulative Distribution Function (CDF) of 
the input random variables. This joint CDF is rarely available in practical applications. 
Therefore, Rosenblatt transformation can be used only if the joint CDF is given or input 
variables are independent. The Nataf transformation only requires the marginal CDFs and the 
linear correlation matrix of the input random variables. Unlike the joint CDF, this information 
is easily available in practical applications and because that Nataf transformation is selected. 
Nataf transformation can be easily adapted for RBDO approaches. Here, Nataf transformation 
is implemented in three RBDO approaches: RIA-based double loop approach, PMA-based 
double loop approach and the well known decoupled approach named SORA early described. 
Single loop RBDO approaches might not be suited to address correlated input variables and are 
not considerate in this work.  
Recently, the Nataf transformation has been viewed as a Gaussian copula by several researches 
[17], [18]. Consequently, we briefly describe the concept of copula and second we describe the 
Nataf transformation. Then, important remarks about the applicability of the Nataf 
transformation are exposed. 
 
6.1 Theory of copulas 
The theory of copulas is stated by Nelsen (1999) [19]: “Copulas are functions that joint or 
couple multivariable distribution function to their one-dimensional marginal distribution 
functions. Alternatively, copulas are multivariable distribution functions whose 
one-dimensional margins are uniform on the interval [0 1]” .  
Using a copula, we can construct a multivariable distribution by specifying marginal univariate 
distributions, and then choose a copula to provide a dependence structure between variables. 
Bivariate distributions, as well as distributions in higher dimensions, are possible.  
There are various measures of dependence to summarise the dependence structure between 
variables. Some of them are widely used: Pearson Rho or linear correlation coefficient, 
Spearman correlation coefficient, Kendall`s tau, and tail dependence coefficients. There are 
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several types of copulas and they can group in classes or families. The more important copulas 
are: Perfect dependence and independence copulas, Gaussian copula, t-Student copula, 
Arquimedean copulas (Gumbel, Clayton and Frank copulas).  Some of theses copulas can 
model only very limited types of dependence. 
 
An important result about copulas is the Sklar’s theorem (1959) that is stated as: 
“Let ( )nxx ,...,1=X be a vector of random variables with a joint distribution ( )nX...X x,...,xF

n 11
 

and marginal distributions, ( )11
xFX ,…, ( )nX xF

n
. There exists an n-dimensional copula C such 

that 

 ( ) ( ) ( )( )nXXnXX xFxFCxxF
nn

,...,,..., 11... 11
=  (7) 

If the marginal distributions ( )iX xF
i

 are continuous, the copula C is unique; otherwise C is 

uniquely determined only on ( ) ( )nFRangeFRange ×⋅⋅⋅×1 . 
On the other hand, consider a copula C and univariate function distributions. Then 

( )nX...X x,...,xF
n 11

 as defined in Eq. (7) is a joint CDF with marginal 

distributions ( ) ( )nXX xFxF
n

,...,11
” . 

It is interesting to rewrite Eq. (7) for the copula itself: 
 ( ) ( ) ( )( )nXXX...X uF,...,uFFC

nn

1
1

1

11

−−=u  (8) 

where ( )⋅−1

iXF  is the generalized inverse of ( )⋅
iXF . Eq. (7) can be viewed as a theoretical tool to 

obtain the copula from a multivariable distribution function. This equation allows extracting a 
copula directly from a multivariable function. Here, we obtain the Gaussian copula from the 
multivariable normal distribution. 
 
6.2 The Gaussian copula 
The Gaussian copula is a link between a multivariate normal joint CDF and marginal CDFs.  
 ( ) ( ) ( )( ) n

nn IuuuuC ∈′ΦΦΦ=′ −−
′Φ uPP P      ,,...,,..., 1

1
1

1  (9) 

where iu  can be any arbitrary marginal CDF ( )iX xF
i

 with values in ]1,0[ , that is, they can be 

normal or non-normal marginal CDF,  P′  is a linear correlation matrix, and P′Φ  is CDF for a 
n-dimensional normal distribution with zero mean and linear correlation matrix P′ . The 
components of P′  are the linear correlation coefficients or Pearson’s Rho between the random 
variables ( ) ( )( )nuu 1

1
1 ,..., −− ΦΦ .  

We recall that the linear correlation coefficient between two correlated input variables ( )YX ,  
is defined as  
 ( )

( ) ( )YVarXVar

YXCov
YX

⋅
= ,

,ρ  (10) 

 
6.3 Nataf Transformation 
The Nataf transformation transfers correlated input variables X  with marginal CDF ( )iX xF

i
 and 

linear covariance matrix [ ]ijρ=P   into independent standard normal variables U  through two 

steps: 
In the first step, the original random variables X  are transformed into correlated standard 
normal variables Y  with the linear correlation matrix [ ]ijρ ′=′P . The dependence structure 

between these standard normal variables Y  is modelled by a Gaussian copula parameterised 
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with the matrixP′ . Therefore, the correlated standard normal variables are obtained using 

 ( )[ ] nixFy iXi i
,...,1,1 =Φ= −       (11) 

The hard task in this step is the computation of the components [ ]ijρ ′  of the linear correlation 

matrixP′ . This requires solving this equation. 
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where 






 −

i

i

X

XiX

σ
µ

is the normalized random variable foriX , ( )ijji yy ρφ ′;,  is the standard 

bivariate normal Probability Density Function (PDF) and ijρ  is the linear correlation 

coefficient between iX  and jX . The exact solution of Eq. (12) requires a great computational 

effort. Liu and Der Kiureghian [20] have solved this equation and have estimated the linear 
correlation coefficients ijρ ′  from ijρ  for different types of input variables. They provided 49 

empirical formulas with ijρ ′  in terms of ijρ  for 10 different probability distributions. Also, they 

provide the range of values for correlation coefficients where Nataf transformation may be 
applicable for combinations of these probability distributions.   
In the second step, the correlated standard normal variables Y  with their multivariable joint 
CDF known from the first step are transformed to uncorrelated standard normal variables 
U through the linear transformation stated as: 

 YLU 1
0
−=  (13) 

where 0L  is the lower triangular matrix obtained from Cholesky decomposition of P′ .  
Therefore, Nataf Transformation is equivalent to choice a Gaussian copula for the joint 
distribution of the input random variablesX . This copula is parameterized by a linear 
correlation matrix P′  is such a way that the joint distribution of X  has the given linear 
correlation matrixP . Eq. (12) allows obtaining matrixP′  from matrixP , but it has some 
limitations.  
 
6.4 Applicability of the Nataf transformation 
R. Lebrun and A. Dutfoy [17] have described some potential pitfalls of using the Nataf 
transformation and the linear correlation as a measure of dependence. The choice of a specific 
family of copulas determines the choice of a specific parameter as measure of dependence. 
Here, the choice of a Gaussian copula implies the choice of a linear correlation like dependence 
measure. Linear correlation is invariant under linear transformations, but not under general 
transformations. This can produce wrong results when it is considered outside the multivariate 
normal distributions. Gaussian copula does not allow taking into account any positive tail 
dependence, because this copula is asymptotically independent in both upper and lower tails. 
This means, no matter what high linear correlation exists; there will be no tail dependence from 
a Gaussian copula. Upper and lower tail dependence coefficients are dependence measures in 
extreme values of the random variables. These are important measures when we are interested 
in the evaluation of a probability of failure for a system with dependent random variables, 
because failure usually occurs when these random variables are in their extreme values into the 
failure region. Therefore, the use of Gaussian copula might lead to a highly underestimated 
probability of failure. 
Linear correlation coefficient is a well studied concept; unfortunately, it is only a suitable 
dependence measure in a special class of distributions, i.e. elliptical distributions. This class 
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includes the normal distribution and mixtures of normal distribution.  It is well known that 
beyond this class the use of linear correlation leads to a number of pitfalls and fallacies. 
Let be ( )21, XX  two random variables with marginal CDFs ( )11

xFX and ( )22
xFX , there exist 

values in[ ]1,1− that cannot be reached by the linear correlation coefficient between 1X  y 2X , 
whatever the copula we choose: these values are not compatible with the chosen marginal 
distributions and the linear correlation  coefficient 12ρ   takes values in an interval [ max

12
min
12 , ρρ ] 

included in [ ]1,1− . This drawback is emphasized in Nataf transformation and the consequence 

is the impossibility to solve Eq. (12) for values of ijρ close to -1 and 1 and for some probability 

distributions [20].   
Important properties of linear correlation matrix must be checked. This matrix must be definite 
positive and symmetric with all its diagonal elements equal to 1 and the others in [-1, 1]. 
Therefore, if Nataf transformation is used, these properties must be verified for both linear 
correlation matrixPandP′ . Sometimes, this is an important difficulty, especially for high 
dimension correlation matrix. 
Yoojeong Noh et al [18] have also studied the applicability of Gaussian copula. They show that 
Gaussian copulas can construct the exact joint PDF in the two-dimensional case with one 
normal and one lognormal input random variables and can accurately estimate the joint CDF in 
the two dimensional case of correlated lognormal input variables if they are positively 
correlated or independent. The Gaussian copula may also accurately estimate the lognormal 
distribution with a small coefficient of variation because the shape of lognormal distribution 
with small coefficient of variation is very similar to the normal distribution. However it can not 
accurately model multivariate distributions with non-normal margins whose shapes are rather 
different from the normal distribution. They study the applicability of Gaussian copula for a 
two dimensional case of correlated input random variables with exponential distributions. They 
show the difficulties to model a joint exponential CDF by a Gaussian copula.  
These difficulties involved in the construction of a joint CDF for dependent input random 
variables might be solved by using a different class of copulas with its specific dependence 
measures to parameter the dependence structure between the random variables. Further 
investigation must be carried out about dependence modelling between random variables and 
its applicability to RBDO problems. However, when experimental data are not available and 
the information about input random variables is only the marginal distributions and the linear 
correlation matrix, Nataf transformation can be considered the unique solution for structural 
reliability applications. When there is an experimental sample, several copulas could be fitted 
to the data and simple graphical tools and numerical techniques could be used to select an 
appropriate model.    
The next section studies the application of several RBDO approaches to a structural example 
with correlated input variables. Different probability distributions are considered. The results 
are verified trough Importance Sampling MCS for the active constraints. 
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7 Structural example: ten bars truss 
The ten bar truss structure shown in Fig. 1 is widely used by RBDO community.  The weight of 
the ten bar truss is minimized subject to stress, displacements and bucking constraints. The 
structures is supporting correlated random loads, the mean value of the first one is kNP 1001 =  
applied in the node 1 and the mean value of the second one is kNP 502 =  applies in the nodes 2 
and 4. The bars are manufactured in steel, with circular sections. Since the horizontal, vertical 
and diagonal members are cut from three different steel rods, their cross-sectional areas1A , 2A  
y 3A , respectively, are considered to be random design variables. Random variables are 
summarized in Table 1. Random input loads are assumed correlated. Standard deviations are 
assumed constant through the RBDO process.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1. Ten bar Truss 
 
In this RBDO example, the volume of the structure is minimized subject to 11 reliability 
constraints corresponded to state limit functions. Design variables are constrained by lateral 
bounds. The RBDO formulation is stated as: 
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where the reliability constraints are the subsequent state limit functions: 
 
 Displacement constraint:  Vertical displacement of the node 2 ( )2

Vq is limited: 

 ( )
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where the allowed displacement is cmqa 5.3=  
 
Stress constraints:  Maximum stress of the element is limited: 
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where aσ is the maximum stress allowed and, in the case of bars in compression, it regards the 
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buckling of the bar and takes the value of the Euler’s critical stress, that is stated as:  

 
Al

EImincr
2

2πσ =  (17) 

whereE  is the elasticity module,  minI  is the minimum moment of inertia of the cross section, 
l  is the length of the bar and A  is the cross area. A target reliability index 7.3=tβ  was fixed 
for all the constraints. This reliability index value corresponds to a failure probability of 

4100780.1 −⋅ . 
Three RBDO approaches are applied to the problem: RIA-based double loop method 
(RBDO-RIA), PMA-based double loop method and SORA. Since inverse reliability analysis 
was computed by using the enhanced Hybrid Mean Value (HMV+) method the last two RBDO 
approaches are named RBDO-HMV+ and SORA-HMV+, respectively. A linear elastic 
analysis is assumed to evaluate the structural response. All sensitivity calculations were carried 
out analytically 
  

Table 1: Random Variables in ten bar truss 
Random 
Variable 

Description 
Type of 

Distribution 
Initial 
Mean 

Standard 
Deviation 

Design 
Variable 

1X  1A  LN 20.0 cm2 1.0 cm2 1Xµ  

2X  2A  LN 20.0 cm2 1.0 cm2 2Xµ  

3X  3A  LN 20.0 cm2 1.0 cm2 3Xµ  

4X  E  LN 21000.0 kN/cm2 1000 kN/cm2 - 

5X  aσ  LN 21.0 kN/cm2 20 kN/cm2 - 

6X  1P  G 100.0 kN 20 kN - 

7X  2P  LN 50.0 kN 2.5 kN - 

 
 

Case a):  ( )20,100~1 GP  and ( )5.2,50~2 LNP , where G means Gumbel or Extreme value 
Type I distribution and LN, lognormal distribution. The linear correlation coefficient ρ  
between these variables can not take values in the entire range [-1, 1], because if ρ  is closed to 
1 or -1, the linear correlation matrix is not definite positive and, therefore, Nataf transformation 
can not be applied.  
The results obtained from RBDO-HMV+ (Table 2) and RBDO-SORA (Table 3) approaches 
are practically the same. As shown in the tables, the optimum cross areas and volumes for the 
structure significantly depend on the linear correlation coefficientρ .  
The RBDO-RIA approach does not converge. The nonlinearity involved in mapping random 
variables from the original space X  to the standard normal spaceU , especially with the 
Gumbel distribution, is the reason of this lack of convergence. For the sake of a comparative 
analysis the convergence tolerance is set as 410−  for all the iterative algorithms. The 
computational efficiency of the RBDO methods is expressed by the number of optimization 
iterations and Limit State Functions (LSF) or performance functions evaluations. Last three 
columns in Table 3 contain the LSF evaluations for the sequential optimization cycle, the LSF 
evaluations for the reliability assessment cycle and the total number of LSF evaluations, 
respectively. 
Result are verified by Importance Sampling Monte Carlo Simulation (MCS) for the active 
constrains ( 2g , 7g and 8g ) and the error in terms of index reliability is below 0.4%. 
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Table 2: Case a - RBDO-HMV+ results 

ρ A1, cm2 A2, cm2 A3, cm2 Volume, cm3 Opt. Iters. LSF  Eval 

0.95 59.6390 24.0069 64.2111 234056.719 23 760 

0.80 59.4516 24.1064 63.9198 233264.972 23 762 

0.60 59.2051 24.2341 63.5339 232215.226 23 766 

0.40 58.9622 24.3564 63.1509 231172.851 23 787 

0.20 58.7232 24.4737 62.7734 230143.686 23 809 

0.00 58.4882 24.5866 62.3980 229121.177 23 813 

-0.20 58.2572 24.6955 62.0264 228109.321 23 856 

-0.40 58.0303 24.8006 61.6589 227109.179 23 859 

-0.60 57.8077 24.9021 61.2959 226121.851 23 860 

-0.80 57.5894 25.0005 60.9379 225148.456 23 864 

-0.95 57.4286 25.0722 60.6728 224428.215 23 874 

 
 
 

Table 3: Case a - SORA-HMV+ results 

ρ A1, cm2 A2, cm2 A3, cm2 Volume, cm3 
Opt. 
Iters. 

LSF  Eval  
OPT 

LSF  Eval 
REL 

LSF  Eval  
SUM 

0.95 59.6390 24.0069 64.2111 234056.783 4 396 132 528 

0.80 59.4516 24.1065 63.9198 233265.035 4 396 132 528 

0.60 59.2051 24.2341 63.5340 232215.290 4 396 132 528 

0.40 58.9622 24.3564 63.1510 231172.917 4 396 135 531 

0.20 58.7232 24.4737 62.7735 230143.722 4 396 140 536 

0.00 58.4882 24.5866 62.3980 229121.208 4 396 141 537 

-0.20 58.2571 24.6955 62.0264 228109.348 4 396 149 545 

-0.40 58.0303 24.8005 61.6589 227109.201 4 440 149 589 

-0.60 57.8076 24.9021 61.2959 226121.870 4 473 149 622 

-0.80 57.5894 25.0005 60.9379 225148.471 4 506 149 655 

-0.95 57.4286 25.0722 60.6728 224428.229 4 429 148 577 

 

Case b):  ( )20,100~1 LNP  and ( )5.2,50~2 LNP . Now, the two correlated load are lognormal 
distributed. The rest of random variables remain without changes. In this case the three methods 
(RBDO-RIA, RBDO-HMV+ and RBDO-SORA) converge to the same results (Tables 4, 5 and 
6).  Results are verified by Importance Sampling MCS for the active constrains (2g , 7g and 8g ) 

and the error in terms of index reliability is below 0.4%. 
 

Table 4: Case b - RBDO-RIA results 

ρ A1, cm2 A2, cm2 A3, cm2 Volume, cm3 Opt. Iters. LSF  Eval 

0.95 57.0238 22.2165 61.8842 224258.5545 20 1310 

0.80 56.8419 22.3186 61.6070 223504.9957 20 1310 

0.60 56.6003 22.4493 61.2363 222495.5781 20 1313 

0.40 56.3601 22.5744 60.8646 221482.1702 6 393 

0.20 56.1218 22.6944 60.4903 220462.3006 6 388 

0.00 55.8856 22.8097 60.1178 219445.9717 5 355 

-0.20 55.6519 22.9205 59.7478 218435.1344 5 352 

-0.40 55.4213 23.0273 59.3769 217423.7647 5 337 

-0.60 55.1939 23.1303 59.0079 216418.2776 6 396 

-0.80 54.9703 23.2297 58.6416 215421.1287 9 581 

-0.95 54.8053 23.3020 58.3692 214680.2668 13 807 
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Table 5: Case b - RBDO-HMV+ results 

ρ A1, cm2 A2, cm2 A3, cm2 Volume, cm3 Opt. Iters. LSF  Eval. 

0.95 57.0238 22.2165 61.8842 224258.5293 9 297 

0.80 56.8419 22.3186 61.6069 223504.8911 9 297 

0.60 56.6003 22.4493 61.2361 222495.2383 9 297 

0.40 56.3601 22.5744 60.8643 221481.4061 9 300 

0.20 56.1216 22.6944 60.4917 220464.9750 9 301 

0.00 55.8854 22.8096 60.1188 219447.7224 9 306 

-0.20 55.6517 22.9205 59.7463 218431.6546 9 310 

-0.40 55.4210 23.0272 59.3769 217423.2526 9 318 

-0.60 55.1936 23.1302 59.0079 216417.6939 9 320 

-0.80 54.9700 23.2296 58.6415 215420.5287 9 323 

-0.95 54.8050 23.3019 58.3691 214679.6956 10 360 

 
 
 

Table 6: Case b - SORA-HMV+ results 

 
The results for the two cases show that the number of LSF evaluations increases when the 
correlation coefficient decreases from 0.95 to -0.95. In case a SORA-HMV+ is more efficient 
than RBDO-HMV+, computationally speaking. However, RBDO-HMV+ is more efficient than 
SORA-HMV+ in case b. From this structural example, we can conclude that correlation can be 
easily considered in the RBDO of structural problems. When an estimation of the correlation 
coefficient is not available or when linear correlation is time variant, we could take the higher 
values of design variables for any value ofρ . That is, in case b), 57.0238, 23.3019 and 61.8842 

cm2 for the cross-sectional areas1A , 2A  y 3A , respectively. 
 
8. Conclusions 
The efficiency of three RBDO methods for dependent input variables has been presented. These 
methods were coded by the first author, basing on previous literature. Active constraints 
strategy and “warm up” strategy (set as starting point in the current MPP search for each 
reliability constraint, the MPP obtained from the last optimization cycle) were not development 
in the implementation of the RBDO methods for the sake of comparison between the methods. 
Therefore, the efficiency of these methods could be further improved with little programming 
effort.  
Since only marginal CDFs and matrix correlation of the random input variables are known in 
practical applications, Nataf transformation is practically the unique choice in most RBDO 

ρ A1, cm2 A2, cm2 A3, cm2 Volume, cm3 Opt. Iters. 
LSF  Eval 

OPT 
LSF  Eval  

REL 
LSF  Eval 

SUM 

0.95 57.0238 22.2165 61.8842 224258.5290 5 363 165 528 

0.80 56.8419 22.3186 61.6069 223504.8909 5 363 165 528 

0.60 56.6003 22.4493 61.2361 222495.2382 5 363 165 528 

0.40 56.3601 22.5744 60.8643 221481.4063 5 473 165 638 

0.20 56.1216 22.6944 60.4917 220464.9754 5 473 165 638 

0.00 55.8854 22.8096 60.1188 219447.7230 5 473 169 642 

-0.20 55.6517 22.9205 59.7463 218431.6554 5 484 169 653 

-0.40 55.4210 23.0272 59.3769 217423.2534 5 583 175 758 

-0.60 55.1936 23.1302 59.0079 216417.6949 5 583 177 760 

-0.80 54.9700 23.2296 58.6415 215420.5299 5 583 178 761 

-0.95 54.8050 23.3019 58.3692 214679.7027 5 572 178 750 
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problems to transform correlated random input variables from the original space to the standard 
uncorrelated normal space.  
Nataf transformation has been studied as the composition of a Gaussian copula and a linear 
transformation. Advantages and drawbacks derived from using Nataf transformation have been 
described. Nevertheless, Nataf transformation works well in most real problems because 
probabilistic distributions of input random variables usually are normal or similar to normal and 
their coefficients of variation are low. Another advantage is that a wide range of correlation 
coefficients is covered by Nataf transformation. In this paper, a structural example shows that 
Nataf transformation is a valid tool for structural applications in RBDO. Results are verified by 
Importance Sampling MCS and the errors are very little.  
The review of the Nataf transformation from the copula viewpoint opens several questions to 
the RBDO community and further investigation about the applicability of classes of copulas 
different to the Gaussian copula in RBDO.  
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