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1. Abstract

A deterministic optimization does not account fog tincertainties in the design variables and
parameters. Modern competitive market demands hegeired the designers to introduce
techniques for obtaining optimized designs thatadge reliable. In the past twenty-five years,
researchers have proposed a variety of methodstémnooptimum and reliable designs. These
methods are addressed in Reliability-Based Desigtintization (RBDO). There are various
types of RBDO approaches: Double-Loop methods, Daled methods and Single-Loop
methods. This paper studies the efficiency of theowus RBDO approaches applied to
problems with dependent non-normal random inpuiatées. Usually, the joint cumulative
distribution function of this random vector is smhdl available. In practice, it is further
recognized that a general random vector could balgharacterized reliably up to the marginal
distributions and a measure of dependence betweem & the popular linear correlation
matrix. However, such limited information could ro enough to defined uniquely a general
random vector.

First Order Reliability Method (FORM) is the mosiely used method for reliability analysis.
This method usually requires a iso-probabilismaformation from the dependent non normal
input random variables in the original space tmd&&ad normal random variables in the
standard space. Since only marginal distributiowsthe linear correlation matrix are available
to define the input random vector, the Nataf trarmmeftion is often the first choice. Recently,
Nataf transformation has been considered from thgula viewpoint because it is the
composition of two functions: the Gaussian copuld a linear transformation. The Gaussian
copula accurately constructs a joint cumulativetridistion function for several types of
dependent random vectors when the marginal disioibsiand the linear correlation matrix are
available. Since this information could be obtaifren real data, Nataf transformation could
be used in many practical RBDO applications. Howewsing a Gaussian copula and,
therefore, a linear correlation matrix to modeleaeral random vector might generate several
pitfalls and difficulties.

A structural design example with dependent loagsasided in this paper to show the practical
applicability of the Nataf transformation in RBDSeveral RBDO approaches are considered.
The numerical efficiency and convergence are clgeckise computational cost is assessed by
the amount of optimization iterations and the tofgberformance functions evaluations.

2. Keywords: Structural Reliability, Reliability Based Design pization, Nataf
Transformation, Copulas, Correlated random vargble

3. Introduction

Design optimization has undergone a substantiagrpes. Commercial finite element codes
have added optimization methods. However, mosthete developments deals only with
deterministic parameters. Uncertainties need todnsidered in the design of any engineering
system to assure reliability and quality. Tradiibrdeterministic design methods have
accounted for uncertainties through empirical yafattors. However, such safety factors do



not provide a quantitative measure of the safetygman design and are not quantitatively
linked to the influence of different design varedhnd their uncertainties on the overall system
performance. For a rational design to be madecitsial to account for uncertain properties of
material, loading and geometry as well as the nmagttieal model of the system. Also, any type
of dependence or correlation between these unogesimust be accounted for. The process of
design optimization enhanced by the addition ofabdity constraints is referred to as
reliability-based design optimization (RBDO).

The aim of RBDO is to achieve optimal objective t@nsuring adequate reliability. There are
various RBDO methods. They are related to diffeferthulations for the objective function
and the reliability constraints. Objective functiena measure that we want to minimize and
can be chosen between these types: weight of thetwte, life-cycle cost of a product,
probability of failure. Reliability constrains camclude requirements about the probability of
failure of individual components as well as thelyadoility of failure of the entire system.
However, the most widely used RBDO formulation eomé an objective function of the type
minimization of the weight subject to componengleneliability constraints. This formulation
is stated in the section 4. During the last twény years several RBDO approaches have been
proposed. The main challenge of researchers ibtaroefficient and robust methods to avoid
the high computational cost and convergence diffesi of the early methods. Several
proposed methods are briefly described in section 5

An important property of any RBDO method is gengralhat is, it has to address a wide range
of problems including analytical problems, struatyoroblems and large scale engineering
design problems. Also, an efficient RBDO method tikasolve problems with several types of
variables: deterministic design variables, rand@sigh variables, and other deterministic and
random system variables. Frequently, in many emging applications two input random
variables are related. For example, material pt@gseand fatigue properties are correlated [1].
Therefore, correlated input variables must be agtasliin RBDO approaches and this paper
studies their efficiency. If a RBDO method applies First Order Reliability Method (FORM)
to evaluate reliability constraints, correlated mammal input random variables in the original
space are converted to uncorrelated standard noamébm variables. Nataf transformation is
the more widely implemented model to carry out thik. Recently, Nataf transformation has
been reviewed from the copula viewpoint. Nataf sfarmation uses the Gaussian copula to
obtain a joint distribution for correlated randomariables if their marginal distributions and
linear correlation matrix are known. Nataf transfation, therefore, inherits the advantages
and drawbacks of the Gaussian copula. These sslgeeistudied in section 6. The classic ten
bar truss problem shows the applicability of theédfl&ransformation in RBDO in section 7.
Results are verified by Importance Sampling Morae&Simulation (MCS). Finally, section 8
includes the conclusions.

4. Formulation of the RBDO problem
A typical RBDO problem is formulated as
min f(d, px, pe)
M
st. Py =P[gi(d,X,P)<0]< P}, i=1..n (1)
d-<d<d", ny <px Spy

whered OR* is the vector of deterministic design variables,r™ is the vector of random
design variablesP [1R" is the vector of random parametefg]l is the objective functiomis

the number of constraintg, is the number of deterministic design variablesis the number
or random design variables angdis the number of random parametepg, is the probability of



violating thei-th probabilistic constraint anB is the target probability of failure for theh
probabilistic constraint.

If the First Order Reliability Method (FORM) is ukeas usually occurs in practical
applications, the failure probabilitly; of a probabilistic constraint is given as a fuoctof the

reliability index £, written as:
P, = &(-5) (2)

where ®([Jis the standard Gaussian cumulated distributiowtfan andg is the reliability

index defined by Hasofer and Lind (1974), whicheisluated by solving the constrained
optimization problem:
1

p=minju = (u" w)
st.:G(d,u)=0
The solution of this optimization problent’ is the minimum distance of a poiaton the
failure surfaceG(d,u) =0 from the origin of the standard normal spateand is called the
Most Probable Point (MPP) of -point, as,B:HuEH . A probabilistic transformation

U =T(X,P) from the original space of physical random vaeat{X,P) to the normalized
space U is needed. The image of a performance function g (d,X,P)
isG(d, T(X,P)) = G/(d,u). In subsequent sections this transformation veilelplained.

The optimization process of Eq. (1) is carriediauhe space of the design parame(lrda,rp;x).

In parallel, the solution of the reliability probheof Eq. (3) is performed in the space of the
random variables.

Traditional RBDO requires a double loop iteratiomgedure, where reliability analysis is
carried out in the inner loop for each change andksign variables, in order to evaluate the
reliability constraints. The computational time tors procedure is extremely high due to the
multiplication of the number of iterations in bathter loop and reliability assessment loop,
involving a very high number of mechanical analyses

(3)

5. RBDO approaches

Due to the prohibitive computational effort of ttraditional double loop RBDO method,
researchers have developed several approachdséals® numerical difficulties. Below, they
are briefly described:

5.1 Double-loop Approaches

These RBDO formulations are based on improvemdriteedraditional double-loop approach
by increasing the efficiency of the reliability &y&is. Two approaches have been proposed to
deal with probabilistic constraints in the doubdep formulationReliability Index Approach
(RIA) and Performance Measure Approach (PMA).

RIA based RBDO is the traditional or classic RB@@nhiulation. The RBDO problem is solved
in two spaces: the spaces of design variablesegoonding to a deterministic physical space
and the space of Gaussian random variables, odtéiynerobabilistic transformation of the
random physical variables. The RIA based RBDO mobis stated as:



min f(d,llx,llp)

dipx
st. B(d,X,P)=4!, i=1..n 4
d- <d<d’, ny <py <py

where S, is the reliability index of théth probabilistic constraint for the structure agbis

the target or allowed reliability index. The cdition of the reliability indexs; involves
solving the optimization problem stated as Eq.@th, standard nonlinear constrained
optimization methods and FORM methods like the Hasbind-Rackwitz-Fiesler (HLRF)
method or the improved-HLRF method can be used.

The solution of this RBDO problem consists in sodythe two nested optimization problems.
For each new set of the design parameters, trebildly analysis is performed in order to get
the new MPP, corresponding to a given reliabiktydl. It is well established in the literature
that RIA-RBDO converges slowly, or provides ina@tarresults or even fails to converge due
to the highly non linear transformations involved.

Lee and Kwak [2] and Tet al [3] proposed the use of a Performance Measureosoh
instead of the widely used RIA. In PMA, inversaability analysis is performed to search for a
point with the lowest positive performance functi@lue on a hypersurface determined by the
target reliability index3' . Since the inverse reliability analysis is also parfed iteratively, the
reliability analysis and optimization loops ardl stested.

The PMA-based RBDO problem is stated as

TJP f(dallx,llp)
st. G, =R o(-4 )20, i=1...n (5)
d-<d<d’, piprSp?(

where the performance meas@g is obtained from the following reliability minimasion

problem:
G, =min G(d,u)

st. |u[=24

The computational expense due to the nesting afjdegptimization and reliability analysis
loops makes traditional RBDO impractical for langalistic problems. Various techniques
have been proposed to improve the efficiency of RBBDSome techniques improve the
efficiency of reliability analysis in the doubledpformulations. Other techniques decouple the
design optimization and the reliability analysidiefe are also techniques by which these
design optimization and reliability analysis arerigal out in one loop.

(6)

5.2 Improvements of reliability analysis in douldep formulations.

PMA-based RBDO is shown to be more efficient artalisd than RIA-based RBDO, because
performance measure methods do not obtain the &gt of the probability of failure for
each inner loop and this implies that computatiaoal decreases. However, several numerical
examples using PMA show inefficiency and instapiiih the assessment of probabilistic
constraints during the RBDO proce&D. Younet al [4], [5], [6] have carried out some
PMA-based methods that are more efficient that Aded Mean Value (AMV) method. These
methods are Hybrid Mean Value (HMV) method [4], Bnbed Hybrid Mean Value (HMV+)
method [5] and Enriched Performance Measure Appro@iVA+) [6] and are briefly
described here. HMV is a combination of the Advakt@an Value and the Conjugate Mean



Value methods and provides accurate results focaa and convex nonlinear reliability
constraints. However, although the HMV method pen® well for convex or concave
performance functions, it could fail to convergetiagghly nonlinear performance functions. An
enhanced HMV method, named HMV+ was proposed by Bdun et al [5]. This method
improves numerical efficiency and stability substly in reliability analysis for highly
nonlinear performance functions. This method iniis an interpolation search to improve
the inverse reliability MPP search. PMA+ is an ened PMA enhancing numerical efficiency
while maintaining stability in the RBDO process. RMintegrates three key ideas, in addition
to the HMV+ method: launching RBDO at a determinisptimum design, feasibility checks
for probabilistic constraints and fast reliabilégalysis under the condition of design closeness.

5.3 Decoupled Methods or Sequential Methods.

In these RBDO approaches the optimization probledd the reliability assessment are
decoupled and are carried out sequentially. Thahiéty constraints are replaced by
equivalent deterministic (or pseudo-deterministionstraints, involving some additional
simplifications.

Du and Chen [7] proposed a sequential optimizaaod reliability assessment (SORA)
method. This method employs a decoupled strategyev series of cycles of optimization and
reliability assessment is employed. In each cyadesign optimization and reliability

assessment are decoupled from each other; noilighassessment is required within the
optimization and the reliability assessment in czdpducted after the optimization. The key
concept is to use the reliability information obtd in the previous cycle to shift the
boundaries of the violated deterministic constega(atith low reliability) to the feasible region.

Therefore, the design is improved from cycle toleyand the computation efficiency is
improved significantly.

5.4 Single loop approaches

These RBDO approaches collapse the optimization taadreliability problems within a
single-loop dealing with both design and randomialdes. Both RIA- and PMA-based
single-loop strategies have been developed. [§][19].

The single-loop single-vector (SLSV) approach [&]L] provides the first attempt in a truly
single-loop approach. It improves the RBDO compaitet! efficiency by eliminating the inner
reliability loops. However, it requires a probasiic active set strategy for identifying the
active constraints, which may hinder its practigali

Other single-level RBDO algorithms have also bemorted in Argarwaét al [12], Kuschel
and Rackwitz [9] and Streicher and Rackwitz [13]he$e methods introduce the
Karush-Kuhn-Tucker (KKT) optimality conditions dtet optimums of the inner optimization
loops as equality constraints in the outer desigtinozation loop. This helps to adopt a
well-known strategy for effectiveness in optimipatj i.e., satisfying the constraints only at the
optimum and allowing the solution to be infeasitédore convergence. However, these RBDO
methods based on KKT conditions have a great drekvithe number of design variables
increases and becomes the sum of the original mlesigables, the components of the MPP in
standard normal space for each reliability constsaiand the Lagrange multipliers for each
optimization sub problem. This can increase themdaational cost substantially, especially for
practical problems with a large number of designaides and a large number of constraints.
Furthermore, the approach in [9], [12] and [13]uiees second-order derivatives which are
computationally costly and difficult to calculatecarately.

Liang et al [14] have development a single-loop RBDO formuwlatiThis method has a main
advantage: it eliminates the repeated reliabibgpls without increasing the number of design



variables or adding equality constraints. It doetsraquire second-order derivatives. The KKT
optimality conditions of the inner reliability losgare explicitly used to move from the standard
normal U space to the originak space, where the inequality constraints of the rodésign
optimization loop are evaluated. It converts thebabilistic optimization formulation into a
deterministic optimization formulation. This methestimates the MPP for each probabilistic
constraint using gradient information from the poes iteration. It therefore, eliminates the
reliability optimization loop of the conventionabable-loop RBDO approach.

6 Applicability of RBDO approaches for dependent iput variables

Generality refers here to applicability for diffateéypes of problems. A RBDO approach must
solve different types of problems: analytical ortiheematical problems, engineering problems
represented analytically, structural problems wieduire calling to a FEA tool and large scale
problems. If the number of design variables or pholistic constraints is very high, an
approximate or surrogate model could be obtainedutih response surface or adaptive
response surface methods. Then, a RBDO approadd beuapplied to this approximate
model.

A fundamental aspect is the type of random inpugtes allowed. This paper studies RBDO
approaches applied to a wide range of problemsaagendent input random variables. When
FORM-based RBDO approaches are used, a probabtligtisformation from the non-normal
correlated input random variables spatanto uncorrelated standard normal variables at the
normalized spacé) must be incorporated. Rosenblatt transformatids] @ind the Nataf
transformation [16] are the most representativiesfiamations for correlated input variables.
The Rosenblatt transformation requires the jointnGlative Distribution Function (CDF) of
the input random variables. This joint CDF is rgrelvailable in practical applications.
Therefore, Rosenblatt transformation can be useéd ibrihe joint CDF is given or input
variables are independent. The Nataf transformatidy requires the marginal CDFs and the
linear correlation matrix of the input random vates. Unlike the joint CDF, this information
is easily available in practical applications aedduse that Nataf transformation is selected.
Nataf transformation can be easily adapted for REpProaches. Here, Nataf transformation
is implemented in three RBDO approaches: RIA-badaable loop approach, PMA-based
double loop approach and the well known decouppgmicach named SORA early described.
Single loop RBDO approaches might not be suitextitiress correlated input variables and are
not considerate in this work.

Recently, the Nataf transformation has been vieagea Gaussian copula by several researches
[17], [18]. Consequently, we briefly describe the concembpiula and second we describe the
Nataf transformation. Then, important remarks abthe applicability of the Nataf
transformation are exposed.

6.1 Theory of copulas

The theory of copulas is stated by Nelsen (1999):[Xopulas are functions that joint or
couple multivariable distribution function to theone-dimensional marginal distribution
functions. Alternatively, copulas are multivariablalistribution functions whose
one-dimensional margins are uniform on the intef@al]” .

Using a copula, we can construct a multivariabé¢riution by specifying marginal univariate
distributions, and then choose a copula to progidiependence structure between variables.
Bivariate distributions, as well as distributionshigher dimensions, are possible.

There are various measures of dependence to susenthg dependence structure between
variables. Some of them are widely used: Pearsom &thlinear correlation coefficient,
Spearman correlation coefficient, Kendall's tauj &l dependence coefficients. There are



several types of copulas and they can group irsetasr families. The more important copulas
are. Perfect dependence and independence coputasssi@n copula, t-Student copula,
Arquimedean copulas (Gumbel, Clayton and Frank lkespu Some of theses copulas can
model only very limited types of dependence.

An important result about copulas is the Sklareottem (1959) that is stated as:
“Let X =(x,,...,x,) be a vector of random variables with a joint distriion F,_, (x;,...x,)

and marginal distributionsFy, (% ),...,Fx, (x,). There exists an n-dimensional copa@auch
that

Fx,.x, (xl,...,xn) = C(FX1 (xl),...,Fxn (xn )) (7
If the marginal distribution§, (x; ) are continuous, the copula C is unique; otherw@ses
uniquely determined only dtangéF, )x [ RangéF, ).
On the other hand, consider a copula C and univaridunction distributions. Then
Fy, x. (xlxn) as defined in Eq. (7) is a joint CDF with marginal
distributionsFy, (xl) Fyx, (xn ) .
It is interesting to rewrite Eq. (7) for the copitkelf:

Clu) = Ry, x, (R () P2 u,) (®)
where F, (N is the generalized inverse Bf (. Eq. (7) can be viewed as a theoretical tool to

obtain the copula from a multivariable distributifmmction. This equation allows extracting a
copula directly from a multivariable function. Hesge obtain the Gaussian copula from the
multivariable normal distribution.

6.2 The Gaussian copula
The Gaussian copula is a link between a multivamatrmal joint CDF and marginal CDFs.

Co (UpornsUn|P') = Do (@ (uy),..., @ Hun JP), uDII" ©)

whereu, can be any arbitrary marginal COW, (x; ) with values in[0]], that is, they can be

normal or non-normal marginal CDR’ is a linear correlation matrix, arly is CDF for a
n-dimensional normal distribution with zero meard dmear correlation matriP’' . The
components oP’ are the linear correlation coefficients or Peals&ho between the random

variables(CD‘l(ul),...,dJ‘l(un)).
We recall that the linear correlation coefficiertween two correlated input variables,Y)
is defined as
_ Co{Xx.Y)
Pxy =
JVar(X)var(Y)

(10)

6.3 Nataf Transformation
The Nataf transformation transfers correlated ivauiablesx with marginal CDFF, (x) and

linear covariance matri® = [pij] into independent standard normal variakbethrough two

steps:
In the first step, the original random variablésare transformed into correlated standard
normal variablesY with the linear correlation matriX :[pi]]. The dependence structure

between these standard normal variabfess modelled by a Gaussian copula parameterised



with the matriXP’. Therefore, the correlated standard normal vaghte obtained using

yi =Y Fy (x), i=1...n (11)
The hard task in this step is the computation efcthmponentépi}] of the linear correlation
matrixP' . This requires solving this equation.

0 0 i—ux: [ X UX
o= ] (X' X j[ s J}o(yi,yj;pl’j)dyidyj (12)

o —el OXi X |

Oy,

Xi - ] . . . 7 H
where (—’UX] is the normalized random variable ¥, ¢y, y;; o)) is the standard

bivariate normal Probability Density Function (PDEhd p; is the linear correlation
coefficient betweenX; and X;. The exact solution of Eq. (12) requires a greatgutational

effort. Liu and Der Kiureghian [20] have solvedstl@quation and have estimated the linear
correlation coefficientso; fromp; for different types of input variables. They prositi49

empirical formulas withp; in terms of p; for 10 different probability distributionélso, they

provide the range of values for correlation coéffits where Nataf transformation may be
applicable for combinations of these probabilitytdbutions.

In the second step, the correlated standard novarablesy with their multivariable joint
CDF known from the first step are transformed te@arrelated standard normal variables
U through the linear transformation stated as:

U=L3Y (13)
wherelL , is the lower triangular matrix obtained from Clsg decomposition oP’ .
Therefore, Nataf Transformation is equivalent twich a Gaussian copula for the joint
distribution of the input random variabl¥s. This copula is parameterized by a linear
correlation matrixP' is such a way that the joint distribution ®f has the given linear

correlation matri¥. Eq. (12) allows obtaining matr®X from matrixP, but it has some
limitations.

6.4 Applicability of the Nataf transformation

R. Lebrun and A. Dutfoy [17] have described someéepial pitfalls of using the Nataf
transformation and the linear correlation as a nmeasf dependence. The choice of a specific
family of copulas determines the choice of a spe@hrameter as measure of dependence.
Here, the choice of a Gaussian copula implies lioéce of a linear correlation like dependence
measure. Linear correlation is invariant underdm#ransformations, but not under general
transformations. This can produce wrong resultsnahis considered outside the multivariate
normal distributions. Gaussian copula does notwallaking into account any positive tail
dependence, because this copula is asymptoticalpendent in both upper and lower tails.
This means, no matter what high linear correlagivists; there will be no tail dependence from
a Gaussian copula. Upper and lower tail dependeoeticients are dependence measures in
extreme values of the random variables. Thesengpertant measures when we are interested
in the evaluation of a probability of failure forsystem with dependent random variables,
because failure usually occurs when these randomblas are in their extreme values into the
failure region. Therefore, the use of Gaussian leomight lead to a highly underestimated
probability of failure.

Linear correlation coefficient is a well studiedncept; unfortunately, it is only a suitable
dependence measure in a special class of distimjti.e. elliptical distributions. This class



includes the normal distribution and mixtures ofmal distribution. It is well known that
beyond this class the use of linear correlatioddda a number of pitfalls and fallacies.
Let be(X,, X,) two random variables with marginal CDFs, (% )andFy, (x,), there exist

values ir{— 11] that cannot be reached by the linear correlati@fficent betweenX; y X,,
whatever the copula we choose: these values areamopatible with the chosen marginal
distributions and the linear correlation coeffitigp,, takes values in an intervgb}", o5]
included in[— 11]. This drawback is emphasized in Nataf transforomatéind the consequence
is the impossibility to solve Eq. (12) for valuds g, close to -1 and 1 and for some probability

distributions [20].

Important properties of linear correlation matriwgshbe checked. This matrix must be definite
positive and symmetric with all its diagonal elertseaqual to 1 and the others in [-1, 1].
Therefore, if Nataf transformation is used, thesgperties must be verified for both linear
correlation matriP andP’. Sometimes, this is an important difficulty, esp#g for high
dimension correlation matrix.

Yoojeong Nolet al[18] have also studied the applicability of Gaussiapula. They show that
Gaussian copulas can construct the exact joint PDiRe two-dimensional case with one
normal and one lognormal input random variablesaamdaccurately estimate the joint CDF in
the two dimensional case of correlated lognorm@luinvariables if they are positively
correlated or independent. The Gaussian copulaalsayaccurately estimate the lognormal
distribution with a small coefficient of variatidrecause the shape of lognormal distribution
with small coefficient of variation is very similéw the normal distribution. However it can not
accurately model multivariate distributions withnawormal margins whose shapes are rather
different from the normal distribution. They stuthe applicability of Gaussian copula for a
two dimensional case of correlated input randomatées with exponential distributions. They
show the difficulties to model a joint exponent@DF by a Gaussian copula.

These difficulties involved in the construction @fjoint CDF for dependent input random
variables might be solved by using a different £lak copulas with its specific dependence
measures to parameter the dependence structureedsetthe random variables. Further
investigation must be carried out about dependemagelling between random variables and
its applicability to RBDO problems. However, whexperimental data are not available and
the information about input random variables isydhke marginal distributions and the linear
correlation matrix, Nataf transformation can be stdared the unique solution for structural
reliability applications. When there is an expenitat sample, several copulas could be fitted
to the data and simple graphical tools and numletazdniques could be used to select an
appropriate model.

The next section studies the application of seM@EIDO approaches to a structural example
with correlated input variables. Different probaildistributions are considered. The results
are verified trough Importance Sampling MCS for dletive constraints.



7 Structural example: ten bars truss

The ten bar truss structure shown in Fig. 1 is lyidesed by RBDO community. The weight of
the ten bar truss is minimized subject to stresplacements and bucking constraints. The
structures is supporting correlated random loddsntean value of the first one Bs=10kN
applied in the node 1 and the mean value of thergkone isP, = 50kN applies in the nodes 2
and 4. The bars are manufactured in steel, wittular sections. Since the horizontal, vertical
and diagonal members are cut from three differt@ sods, their cross-sectional ardas A,

y A, respectively, are considered to be random desgagiables. Random variables are
summarized in Table 1. Random input loads are asdwurrelated. Standard deviations are
assumed constant through the RBDO process.

4)/
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A
£
8
[Ce]
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\ \ /
P, = 50kN P, =50kN

Figure 1. Ten bar Truss

In this RBDO example, the volume of the structiseminimized subject to 11 reliability
constraints corresponded to state limit functiddesign variables are constrained by lateral
bounds. The RBDO formulation is stated as:

Min V(d,ux’up)
st. B =2 ,Bit =37 i=1,..11 (14)
5cm’ < 41, < 75cm? i=123.

where the reliability constraints are the subsetigtte limit functions:

Displacement constraintVertical displacement of the node(qz? )is limited:

q’(d, X,P
gl(dlxyp)zl_M (15)
q
where the allowed displacementds = 35cm
Stress constraintsMaximum stress of the element is limited:
loL(dx.P)
(d,X,P)=1-"E " 4 =211 16
g ) a?,(d,X,P) (18)

where g? is the maximum stress allowed and, in the caseus im compression, it regards the

10



buckling of the bar and takes the value of the Ealitical stress, that is stated as:
cr anImin
ag =
1ZA
whereE is the elasticity module] ., is the minimum moment of inertia of the cross iseGt
| is the length of the bar anél is the cross area. A target reliability indgx = 3.7 was fixed
for all the constraints. This reliability index wal corresponds to a failure probability of
1.07800107".
Three RBDO approaches are applied to the probleik-bRsed double loop method
(RBDO-RIA), PMA-based double loop method and SORBMce inverse reliability analysis
was computed by using the enhanced Hybrid Meane/@liv1\VV+) method the last two RBDO
approaches are named RBDO-HMV+ and SORA-HMV+, retpely. A linear elastic
analysis is assumed to evaluate the structurabrssp All sensitivity calculations were carried
out analytically

(17)

Table 1: Random Variables in ten bar truss

Variable Descripion ot o Mean  Deviation _ Variaple
X, A LN 20.0 cnf 1.0 cnt y7%
X, A LN 20.0 cnt 1.0 cnt Uz
X A LN 20.0 cnf 1.0 cnt Hys
X, E LN 21000.0 kN/crh 1000 kN/crd
Xs o? LN 21.0 kN/ent 20 kN/cnt
Xe B G 100.0 kN 20 kN
X, P, LN 50.0 kN 2.5kN

Casea): P, ~G(10020) andP, ~ LN(50,25), whereG means Gumbel or Extreme value
Type | distribution andLN, lognormal distribution. The linear correlationetficient p
between these variables can not take values iarttie range [-1, 1], becausegf is closed to

1 or -1, the linear correlation matrix is not déirpositive and, therefore, Nataf transformation
can not be applied.

The results obtained from RBDO-HMV+ (Table 2) anB®D-SORA (Table 3) approaches
are practically the same. As shown in the tablesoptimum cross areas and volumes for the
structure significantly depend on the linear catieh coefficienjp .

The RBDO-RIA approach does not converge. The neathity involved in mapping random
variables from the original spacé to the standard normal spdde especially with the
Gumbel distribution, is the reason of this lackcohvergence. For the sake of a comparative
analysis the convergence tolerance is setl@$ for all the iterative algorithms. The
computational efficiency of the RBDO methods is regged by the number of optimization
iterations and Limit State Functions (LSF) or parfance functions evaluations. Last three
columns in Table 3 contain the LSF evaluationgtiersequential optimization cycle, the LSF
evaluations for the reliability assessment cycld #me total number of LSF evaluations,
respectively.

Result are verified by Importance Sampling Montegl€&imulation (MCS) for the active
constrains §,, g-andgs) and the error in terms of index reliability isidoe 0.4%.
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Table 2: Casa - RBDO-HMV+ results

P A, cn? Ascnf Ascn? Volume, cni Opt. lters.  LSF Eval
0.95 59.6390 24.0069 64.2111 234056.719 23 760
0.80 59.4516 24.1064 63.9198 233264.972 23 762
0.60 59.2051 24.2341  63.5339 232215.226 23 766
0.40 58.9622 24.3564  63.1509 231172.851 23 787
0.20 58.7232  24.4737 62.7734 230143.686 23 809
0.00 58.4882 24.5866 62.3980 229121.177 23 813
-0.20 58.2572  24.6955 62.0264 228109.321 23 856
-0.40 58.0303 24.8006 61.6589 227109.179 23 859
-0.60 57.8077 24.9021 61.2959 226121.851 23 860
-0.80 57.5894 25.0005 60.9379 225148.456 23 864
-0.95 57.4286 25.0722 60.6728 224428.215 23 874

Table 3: Casa - SORA-HMV+ results

p A, cnf? A, cnt As, cn?  Volume, cnd I%F;; LSSPI.:‘I.V""I LS;EEvaI LSSFU’\EAvaI
0.95 59.6390 24.0069 64.2111 234056.783 4 396 132 528
0.80 59.4516 24.1065 63.9198 233265.035 4 396 132 528
0.60 59.2051 24.2341 63.5340 232215290 4 396 132 528
0.40 58.9622 24.3564 63.1510 231172917 4 396 135 531
0.20 58.7232 24.4737 62.7735 230143.722 4 396 140 536
0.00 58.4882 24.5866 62.3980 229121.208 4 396 141 537
-0.20 58.2571 24.6955 62.0264 228109.348 4 396 149 545
-0.40 58.0303 24.8005 61.6589 227109.201 4 440 149 589
-0.60 57.8076 24.9021 61.2959 226121.870 4 473 149 622
-0.80 57.5894 25.0005 60.9379 225148471 4 506 149 655
-0.95 57.4286 25.0722 60.6728 224428229 4 429 148 577

Caseb): P, ~LN(10020) andP, ~ LN(50,25). Now, the two correlated load are lognormal

distributed. The rest of random variables remathewit changes. In this case the three methods
(RBDO-RIA, RBDO-HMV+ and RBDO-SORA) converge to th@me results (Tables 4, 5 and

6). Results are verified by Importance Sampling3f@r the active constraing{, g,and gg)
and the error in terms of index reliability is b&10.4%.

Table 4: Casb - RBDO-RIA results

P Ay, cnf A, cnf As, cnt? Volume, cni  Opt. lters.  LSF Eval
0.95 57.0238 22.2165 61.8842 224258.5545 20 1310
0.80 56.8419 22.3186 61.6070 223504.9957 20 1310
0.60 56.6003 22.4493 61.2363 222495.5781 20 1313
0.40 56.3601 22.5744  60.8646 221482.1702 6 393
0.20 56.1218 22.6944  60.4903 220462.3006 6 388
0.00 55.8856 22.8097 60.1178 219445.9717 5 355
-0.20 55.6519 22.9205 59.7478 218435.1344 5 352
-0.40 55.4213 23.0273 59.3769 217423.7647 5 337
-0.60 55.1939 23.1303 59.0079 216418.2776 6 396
-0.80 54.9703 23.2297 58.6416 215421.1287 9 581
-0.95 54.8053 23.3020 58.3692 214680.2668 13 807
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Table 5: Casé - RBDO-HMV+ results

P A, cnf A, cnf As, cn? Volume, cni  Opt. lters. LSF Eval.
0.95 57.0238 22.2165 61.8842 224258.5293 9 297
0.80 56.8419 22.3186 61.6069 223504.8911 9 297
0.60 56.6003 22.4493 61.2361 222495.2383 9 297
0.40 56.3601 22.5744 60.8643 221481.4061 9 300
0.20 56.1216 22.6944 60.4917 220464.9750 9 301
0.00 55.8854 22.8096 60.1188 219447.7224 9 306
-0.20 55.6517 22.9205 59.7463 218431.6546 9 310
-0.40 55.4210 23.0272 59.3769 217423.2526 9 318
-0.60 55.1936 23.1302 59.0079 216417.6939 9 320
-0.80 54.9700 23.2296 58.6415 215420.5287 9 323
-0.95 54.8050 23.3019 58.3691 214679.6956 10 360

Table 6: Casb - SORA-HMV+ results

LSF Eval LSF Eval LSF Eval

p A, cnf? A, cnf As, cn? Volume, cni  Opt. lters. oOPT REL SUM
0.95 57.0238 22.2165 61.8842 224258.5290 5 363 165 528
0.80 56.8419 22.3186 61.6069 223504.8909 5 363 165 528
0.60 56.6003 22.4493 61.2361 222495.2382 5 363 165 528
0.40 56.3601 22.5744 60.8643 221481.4063 5 473 165 638
0.20 56.1216 22.6944 60.4917 220464.9754 5 473 165 638
0.00 55.8854 22.8096 60.1188 219447.7230 5 473 169 642
-0.20 55.6517 22.9205 59.7463 218431.6554 5 484 169 653
-0.40 55.4210 23.0272 59.3769 217423.2534 5 583 175 758
-0.60 55.1936 23.1302 59.0079 216417.6949 5 583 177 760
-0.80 54.9700 23.2296 58.6415 215420.5299 5 583 178 761
-0.95 54.8050 23.3019 58.3692 214679.7027 5 572 178 750

The results for the two cases show that the nurab&SF evaluations increases when the
correlation coefficient decreases from 0.95 t0o5018 casea SORA-HMV+ is more efficient
than RBDO-HMV+, computationally speaking. Howe\RBDO-HMV+ is more efficient than
SORA-HMV+ in casé. From this structural example, we can concludedbaelation can be
easily considered in the RBDO of structural proldelVhen an estimation of the correlation
coefficient is not available or when linear cortiga is time variant, we could take the higher
values of design variables for any valugoofThat is, in casb), 57.0238, 23.3019 and 61.8842

cnt for the cross-sectional ares A, y As, respectively.

8. Conclusions

The efficiency of three RBDO methods for dependgmit variables has been presented. These
methods were coded by the first author, basing @viqus literature. Active constraints
strategy and “warm up” strategy (set as startingtpm the current MPP search for each
reliability constraint, the MPP obtained from thastloptimization cycle) were not development
in the implementation of the RBDO methods for tAkesof comparison between the methods.
Therefore, the efficiency of these methods couldubbaer improved with little programming
effort.

Since only marginal CDFs and matrix correlatiortte random input variables are known in
practical applications, Nataf transformation isgbiclly the unique choice in most RBDO
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problems to transform correlated random input \des from the original space to the standard
uncorrelated normal space.

Nataf transformation has been studied as the catiposf a Gaussian copula and a linear
transformation. Advantages and drawbacks derivad fusing Nataf transformation have been
described. Nevertheless, Nataf transformation waviel in most real problems because
probabilistic distributions of input random varieblusually are normal or similar to normal and
their coefficients of variation are low. Anothervadtage is that a wide range of correlation
coefficients is covered by Nataf transformationtHis paper, a structural example shows that
Nataf transformation is a valid tool for structuaplplications in RBDO. Results are verified by
Importance Sampling MCS and the errors are velg.lit

The review of the Nataf transformation from the wlapviewpoint opens several questions to
the RBDO community and further investigation abth# applicability of classes of copulas
different to the Gaussian copula in RBDO.
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