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ABSTRACT 

A simulation-based, system reliability-based design optimization (RBDO) method is presented 

which can handle problems with multiple failure regions. The method uses a Probabilistic Re-

Analysis (PRRA) approach in conjunction with a trust-region optimization approach. PRRA 

calculates very efficiently the system reliability of a design by performing a single Monte Carlo 

(MC) simulation. Although PRRA is based on MC simulation, it calculates “smooth” sensitivity 

derivatives, allowing therefore, the use of a gradient-based optimizer. The PRRA method is 

based on importance sampling. It provides accurate results, if the support (set of all values for 

which a function is non zero) of the sampling PDF contains the support of the joint PDF of the 

input random variables and, if the mass of the input joint PDF is not concentrated in a region 

where the sampling PDF is almost zero. A sequential, trust-region optimization approach 

satisfies these two requirements. The potential of the proposed method is demonstrated using the 

design of a vibration absorber, and the system RBDO of an internal combustion engine. 
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1. INTRODUCTION 

 In Reliability-Based Design Optimization (RBDO), we often need to estimate repeatedly 

the reliability of a design for different probability distributions of the input variables. Efficiency 

and accuracy are therefore, the two main challenges. The reliability, or equivalently the 

probability of failure, of the system must be calculated accurately and efficiently. The commonly 

used analytical methods (see section 2) are usually efficient but inaccurate, especially for 

problems with “noisy” limit states, which may exhibit multiple failure regions and potentially 

multiple most-probable points (MPPs). Such problems are common in structural dynamics, for 

example. To alleviate this problem, simulation-based reliability methods may be used. However, 

they are computationally very expensive and often impractical for many engineering problems. 

 In probabilistic design, a designer seeks the best configuration to maximize the average 

utility ),,( PXdU  of a design. Utility depends on input variables that can be categorized into 

deterministic design variables d , random design variables X , and random parameters P . 

Because it is difficult to construct the utility function for a design, alternative formulations are 

considered. For example, the designer can minimize (or maximize) the average value of an 

attribute L(d, X, P), such as the cost or weight, and impose constraints to satisfy minimum 

acceptable requirements for the remaining attributes. The system is idealized so that it fails under 

a finite number of failure modes, and the probability of system failure is calculated from the 

probabilities of the modes. The probability of system failure is required to be acceptably low.   

 Let I(d, X, P) be the system failure indicator function, which is defined to be one if the 

system fails and zero if it survives. In system RBDO, the designer seeks the most efficient design 

whose system probability of failure does not exceed an allowable value t
fp . The formulation of 

the system RBDO problem is as follows, 
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0,, PXd  for a series system with M limit states (failure modes).  

 Probabilistic design problems are often very expensive to solve because the failure 

probabilities of tens to thousands of alternative designs must be calculated. Moreover, each 

calculation of the system failure probability requires from few tens to several million 

deterministic analyses.  For a complex structure, such as a car body in crash, each deterministic 

analysis could require several minutes or hours of CPU time. Studies on reducing the 

computational cost of probabilistic design have employed the following approaches: 

a) Reduce the cost of repeated deterministic analyses by using inexpensive approximations of 

the attributes which are categorized into global, local or combined approximations [1]. 

b) Reduce the number of repeated deterministic analyses.  For example, if the system failure 

probability is estimated using MC simulation, many techniques can be used to reduce the 

number of replications (see simulation-based reliability methods in section 2).        
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c) Estimate efficiently the moments of the attributes and use them to estimate the probability of 

failure. Rahman and Xu [2], estimated the moments accurately using one-dimensional 

integration. Youn et al. [3] used this method for efficient estimation of system reliability.    

d) Approximate the tail of the cumulative probability distribution of the performance function 

using a probability distribution that is suitable for representing rare events, such as the 

Extreme I to III types of distributions and the Generalized Pareto Distribution [4].   

 This article proposes to circumvent the high computational cost of probabilistic design 

using a trust-region optimization approach which employs PRRA [5, 6] in each cycle. The 

approach requires only one MC simulation for each cycle, and estimates the probabilities of 

failure of tens or hundreds of designs very efficiently using importance sampling.  The objectives 

of this article are 1) to present an overview of the PRRA approach and its strengths, and 2) to 

integrate PRRA in a trust-region methodology for probabilistic design. The study is confined to 

design problems where all design variables and parameters are random.  

 PRRA calculates very efficiently the system reliability for many probability distributions 

of the input variables, using the results of a single MC simulation for a chosen sampling 

distribution of the input variables.  The method is very efficient because it uses the sample values 

that are already calculated in a MC simulation, to estimate the reliability for other distributions.  

In addition, PRRA estimates efficiently the sensitivity derivatives of the reliability with respect 

to the distribution parameters, which 1) helps identify the important design variables, 2) reduces 

the cost of optimization, and 3) improves the convergence rate. Furthermore, the reliability 

estimates and their derivatives vary smoothly (i.e. there is no numerical “noise” due to random 

sampling), allowing us to use efficient gradient-based optimizers.  
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After an introduction to the analytical and simulation-based RBDO methods in section 2, 

we present an overview of the proposed RBDO method in section 3, providing details on the 

PRRA method in section 3.1, and the proposed “trust-region” RBDO method using PRRA in 

section 3.2. Section 4 demonstrates the main strengths of PRRA using a vibration absorber 

example, and section 5 uses the “trust-region” RBDO method on an internal combustion engine 

example. Finally, summary and conclusions are presented in section 6. 

 

2. ANALYTICAL AND SIMULATION-BASED METHODS IN RBDO 

 For large-scale systems, the reliability prediction is usually based on efficient 

computational methods. Both analytical and simulation-based methods are available. The 

analytical methods are based on the MPP concept. They include the well-known first-order 

reliability method (FORM) that has been widely used [7], second-order reliability methods 

(SORM) [8], and multi-point approximation methods [9]. Among the simulation-based methods, 

the MC simulation method is very simple and accurate. However, its computational cost can be 

prohibitively high. For this reason, more efficient simulation-based techniques have been 

proposed [10, 11]. Among them, the adaptive importance sampling (AIS) techniques are popular 

[12, 13]. A combination of analytical and simulation-based methods has also been used [14]. The 

analytical methods are generally simple and efficient, but for complex problems, their accuracy 

cannot be guaranteed. In simulation-based methods, the accuracy can be controlled but the 

efficiency is generally not satisfactory.  

 For system reliability analysis involving multiple failure modes (limit states), the joint 

failure probability must be taken into account. Due to the difficulty in determining the joint 
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failure probability of more than two failure modes except through MC simulation, 

approximations using first-order and second-order bounds have been developed [15, 16].  

 Simulation-based methods are also used for reliability analysis involving single or 

multiple limit states. Among MCS-based methods seeking to improve computational efficiency, 

adaptive importance sampling (AIS) techniques use an importance sampling density function, 

which is gradually refined to reflect the increasing state of knowledge of the failure domain. The 

importance sampling methods are divided into direct methods [11, 17], updating methods [18], 

spherical schemes [17], directional sampling [19], and adaptive schemes [12, 20]. All methods, 

except the adaptive schemes, require prior knowledge of the failure domain. 

 

3. OVERVIEW OF PROPOSED RBDO METHOD 

It is well known that the analytical reliability methods of section 2 are computationally 

efficient, and relatively accurate depending on the application. However, their accuracy 

deteriorates for problems with highly non-linear and/or “noisy” limit states. Also, they are not 

appropriate for problems with disjoint failure domains and multiple MPPs. Although simulation-

based reliability methods can address the shortcomings of the analytical methods, they can be 

prohibitively expensive for many real-world engineering systems. 

In this paper, a simulation-based Probabilistic Re-Analysis (PRRA) method is used in a 

trust-region, reliability-based design optimization approach. The method uses only three to five 

MC simulations, to solve system RBDO problems with limit states which can be highly non-

linear with multiple MPPs and/or disjoint. In each cycle of the trust-region approach, the PRRA 

method allows the design to move within a specified domain without additional computational 

effort, using only a single MC simulation. 



 8

Section 3.1 provides an overview of the PRRA method and its capability to provide 

smooth sensitivities without additional computational effort (section 3.1.1). The smooth 

sensitivities allow us to use efficient gradient-based optimizers in solving the trust-region sub-

optimizations problems. Section 3.2 highlights the main points of the proposed trust-region 

approach. 

 

3.1.  Estimation of Failure Probability in PRRA 

 The probability of failure of a system is the integral of the joint PDF )(, px,PXf  of the 

random design variables X and the random parameters P over the range of X and P,  

∫= PX PX, xpx,px
,

)(),( dfIp f                (2) 

where )( px,I  is the failure indicator function.  

 In Importance Sampling (IS), sample values of the random variables are generated using 

a sampling PDF )(, px,PX
Sf  that yields many failures with high probability of occurrence, instead 

of the true PDF )(, px,PXf .  An estimation of the probability of failure in this case is  
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and an unbiased estimator of the probability of failure is provided by, 
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where xi, ip , i=1,…, N are the sample values of the random design variables and parameters 

generated from the sampling PDF )(, px,PX
Sf , and Nf is the number of failures.  The sum of the 

right hand side is only for those replications in which the system fails. 
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 We assume that X and P are statistically independent, so that )()(),(, pxpx PXPX fff = , 

where )(xXf  and )(pPf  are the marginal PDFs. A designer can control the mean value of X but 

not P. The key idea of PRRA is that it is sufficient to calculate the failure indicator function of a 

system only for a single sample of values, {xi , pi  i = 1,.., N} in order to estimate the system 

failure probability for other PDFs. Indeed, if one generates a sample from )(, px,PX
Sf  and 

calculates and saves the sample values that caused system failure {xi , pi  i = 1,.., Nf}, then one 

can reuse these sample values to estimate the probability of failure fp̂  for another PDF, 

)(, px,PXf , as 
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 Eq. (5) holds for any combination of PDFs in the numerator and denominator such that 

the support (set of all values for which a function is non zero) of )(, px,PX
Sf  contains the support 

of )(, px,PXf . This is an important requirement for the accuracy of PRRA. 

 Eq. (5) allows us to estimate the failure probabilities of many designs very efficiently 

because it only requires calculation of ratios of PDFs; it does not require calculation of the 

failure indicator function. This reduces the cost of system reliability analysis by several orders of 

magnitude because the calculation of the failure indicator function dominates the cost of 

simulation. The probability of system failure as a function of the mean values of the design 

variables µX is, 
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where )/(/ XµX µx
X

f  is the PDF of X given the mean value vector µX of the random variables X.    
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 An unbiased estimator of the standard deviation of the system failure probability is, 
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Also, the 1-α level confidence interval of the system failure probability is, 

fpNf tp ˆ
2

1,1
ˆ σα ⋅±

−−
                                (8) 

 where 
2

1,1 α
−−N

t  is the point that has below it probability 1-α/2 for Student’s  t-distribution with (k-

1) degrees of freedom. This interval covers the true system probability of failure with probability 

1-α. Usually, α = 0.05 is used corresponding to the 95% confidence interval.  

 An algorithm is described below for efficient estimation of the failure probability for 

many different mean values of the random design variables. This algorithm is used in the trust-

region approach of section 3.2. 

1. Select a sampling PDF )(, px,PX
Sf  for the random variables.   

2. Generate a sample of values for X and P. 

3. Calculate the system failure indicator function, I(xi, pi), for the sample values in step 2. Select 

the subset of sample values that caused system failure.  

4. Estimate the system failure probability using Eq. (6). The standard deviation of this 

probability and a confidence interval can be also calculated using Eqs (7) and (8).  

 The inputs to PRRA are the sampling PDF, the sample of values that caused failure and 

the PDF for which the failure probability is to be estimated. The output consists of the 

probability of failure and its confidence bounds, if needed.  PRRA is non-intrusive because it 

does not require modifications of the computer codes which calculate the values of the limit 

states.  
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 The estimates of the system failure probability from Eq. (6), and the analytical 

sensitivities of section 3.1.1, vary smoothly with the design parameters, provided that the 

sampling and true PDFs are smooth.  This is true because the same sample of values of the 

failure indicator function is used to calculate the failure probability for different values of the 

design variables. In contrast, the system failure probability varies irregularly when calculated 

from MC simulation because different samples of random values are used in each simulation.  It 

is not always possible to synchronize a random number generator in MC simulation because each 

simulation may require a different sample size. An example is the simulation of a system that can 

fail under different progressive collapse scenarios.  In this case, PRRA has an important 

advantage over MC simulation.   

 In order to estimate accurately the system failure probability or the average value of a 

variable, the sample drawn from the sampling PDF should cover adequately the range 

corresponding to the true PDF.  The PRRA method will perform poorly if the mass of the PDF in 

the numerator of Eq. (6) is concentrated in a region where the sampling PDF is almost zero. 

 

3.1.1 Sensitivity Analysis  

 It is important to calculate the sensitivity derivatives of the probability of failure with 

respect to the design variables, and use them in efficient gradient-based optimizers.  However, it 

is impractical to calculate them by a finite difference approach using MC simulation because this 

requires calculation of the system failure probability of perturbed designs from their nominal 

values. Each MC simulation can be very expensive and numerical noise in the estimates of the 

failure probability can amplify the error in the estimates of the sensitivity derivatives.    
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 In PRRA, the sensitivity derivatives of the system failure probability with respect to the 

RBDO design variables can be calculated analytically by differentiating Eq. (6). For example, 

the sensitivity derivative with respect to the jth design variable 
jXµ  is,  
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 In most probabilistic analysis problems, analytical expressions of the random design 

variable PDFs are available, and these expressions can be differentiated analytically with respect 

to the average values.  The calculation in Eq. (9) is therefore, very efficient because it does not 

require any additional function evaluations of the limit states.  

 

3.2 Proposed Trust-Region RBDO Method Using PRRA  

 The trust-region optimization approach uses a number of cycles to locate the final 

optimum. At each cycle, a sub-optimization problem is solved within a defined sub-domain of 

the design space using the PRRA algorithm of section 3.1. The sampling PDF ( )pxPX ,,
Sf  at each 

cycle is chosen such that its variation, measured by the standard deviations of the marginal 

sampling PDFs, is approximately equal to twice the variation of the actual joint PDF ( )pxPX ,,f . 

For normally distributed and statistically independent X and P, XX σσ 2=S  and PP σσ 2=S . If the 

distributions are not normal, we can use for example, the difference between the 95th and 5th 

percentiles as a representative variation measure. For correlated X and P, we use a normal joint 

PDF with twice the variation of the actual PDF ( )pxPX ,,f , where S
Xσ , S

Pσ  and the correlation 

coefficient S
PX,ρ  can be estimated using a maximum likelihood estimation (MLE) approach [21, 

22], for example. The selection of a normal joint PDF for ( )pxPX ,,
Sf  does not affect the accuracy 
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of the PRRA because we use the actual ( )pxPX ,,f  to estimate the probability of failure. The 

sampling PDF can be viewed as an “inflated” actual distribution so that the support of ( )pxPX ,,
Sf  

contains the support of the true distribution  ( )pxPX ,,f  (see section 2.1). This is an important 

requirement for the PRRA to provide accurate results. 

 To demonstrate the steps of the trust-region approach graphically, we use a hypothetical 

problem with two normally distributed and statistically independent random variables 1X  and 

2X  with equal standard deviations, and no random parameters (see Fig. 1). Two limit state 

functions 02,1 =g  are considered. Point D represents the deterministic optimum. 

The circle centered at point A (solid black line denoted by “ Sσ3±  of Sf ”), encloses all 

sample points of ( )pxPX ,,
Sf  which are within Sσ3± , where Sσ  is the standard deviation vector of 

the sampling distribution. The other circle centered at point A (dotted black line denoted by 

“ σ3±  of f ”), encloses all sample points of ( )pxPX ,,f  which are within σ3± , where σ  is the 

standard deviation vector of the actual joint distribution. The support of any actual joint 

distribution “centered” within the “ σ3± of f ” domain will be enclosed by the support of 

( )pxPX ,,
Sf . This is mathematically represented by σµµ XX 3

2
≤− A  where A

Xµ  and Xµ  denote the 

mean values of the design variables at point A, and at any other location within the “ σ3±  of f ” 

domain, respectively (see Fig. 1).   
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Figure 1. Demonstration of sampling PDF and actual PDFs at different designs.   

 

First, we solve a bi-objective optimization problem in which we minimize a weighted 

average of the loss function and the failure probability (point B represents the optimum design).  

Then we minimize the loss function while the probability of failure is constrained to be less than 

an allowable limit (point R represents the optimum design).   

 At the (k+1)th cycle of the trust-region approach, we must solve the following 

optimization problem, 
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where k
Xµ  is the optimum from the kth cycle (e.g. point A). The optimization problem of Eq. (10) 

can be efficiently solved by a gradient-based optimizer using the PRRA algorithm of section 3.1 

and the sensitivities of Eq. (9). However, there may not exist a feasible solution. This happens if 

there is no point in the σµµ XX 3
2

1 ≤−+ kk  domain which satisfies the 

t
f

kk
sys pIPp ≤== ++ ]1),,([ 11 PXd  constraint. To circumvent this, we solve the following 

optimization problem, instead of the problem of Eq. (10),  

  ( )[ ] ),,/)]([(min 11

, 11 sys
kkkk pLELE

kk
+++

++
PXdP,X,d

Xµd
        (11a) 

      s. t. σµµ XX 3
2

1 ≤−+ kk .           (11b) 

The expected design attribute )]([ 11 P,X,d ++ kkLE  at the current (k+1)th cycle is normalized by its 

value at the kth cycle, and the system probability of failure sysp  is added to the normalized value. 

This represents the solution of the bi-objective optimization problem 

{ }syspLE )],([min
,

PX,d,
Xµd

 obtained by the weighted sum method using equal weights for the 

two objectives. 

 The optimization problem of Eq. (11) is solved for a few cycles (three to five) until the 

relative error 
k

kk

f

ff −+1

 of the objective, where 

( )[ ] sys
kkkkk pLELEf += +++ PXdP,X,d ,,/)]([ 111 , is less than 0.5%. The initial point for each 

cycle is the optimum of the previous cycle. After convergence, the optimization problem of Eq. 

(10) is solved to get the final optimum. In Fig. 1 for example, the final optimum is represented by 

point R, indicating that both constraints are probabilistically active. The final design is obtained 

by starting at point B which is the optimum of the cycle which started at point A.  
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 The internal combustion engine example of section 5 demonstrates the described trust-

region approach. 

The described trust-region approach requires a MC simulation at each cycle. Although a 

small number of cycles is required for convergence, and the MC “clouds” overlap between 

successive cycles allowing us to re-use most of the available sample points, the computational 

cost may still be high. However, it can be substantially reduced by using radial-based importance 

sampling techniques [23, 24], “accurate-on-demand” metamodels [25], or a combination of the 

two. We are currently developing a metamodeling technique which uses importance sampling, a 

niching genetic algorithm [26, 27], and a lazy learning method for local metamodeling [28, 29]. 

The technique provides “accuracy-on-demand” based on a user-specified, leave-one-out cross 

validation mean squared error. Details are provided in [30]. 

 

4. A VIBRATION ABSORBER EXAMPLE 

4.1 Problem Description 

 A tuned damper system is shown in Fig. 2. It consists of the original system and a 

vibration absorber. For simplicity, the original system has a single degree of freedom, and is 

subject to a harmonic excitation ( ) )cos( tFtf ⋅= ω . The absorber is attached to the original 

system in order to reduce its vibration amplitude. Variations of this problem have been used in 

the literature [25, 31, 32]. 
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Figure 2. Tuned vibration absorber 

 The amplitude 1Y  of the original system is a function of four parameters. It is normalized 

by the amplitude of its static response 1/ kF  as follows  
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In Eq. (12), MmR =  is the ratio of the absorber mass to the original system mass, ς  is the 

damping ratio of the original system, and ωωβ
11 n=  and ωωβ

22 n=  are the ratios of the 

natural frequencies 
1nω  and 

2nω  of the original system and vibration absorber respectively, to the 

excitation frequency ω . It is assumed that the absorber does not provide additional damping to 

the overall system (see Fig. 2). For illustration, R and ς  are treated as deterministic variables 

with values R=0.01 and ς =0.03, respectively. Only 1β  and 2β  are random variables which are 

assumed normally distributed with mean 1.0 and standard deviation 0.025.  
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 The absorber is added to “absorb” the vibratory energy when the original system is at 

resonance or close to resonance. In this case, its motion becomes large, and the motion of the 

original system reduces considerably. In order for the absorber action to be effective, “tuning” is 

needed so that the natural frequencies of the absorber and the original system are approximately 

equal to the excitation frequency ω ; i.e. ωωω ≈≈
21 nn , or equivalently, 121 ≈≈ ββ . With 

“tuning,” the vibratory amplitude of the original system is almost zero, and the amplitude of the 

absorber, 

2
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      (13)

 

is very high. For durability reasons, the displacement 2y  must be kept below the maximum 

allowable value of 60.  

 Fig. 3 shows contours of 1y  and 2y  as a function of 1β  and 2β . There is a trade-off 

between effective absorber action (small 1y  and simultaneously, large 2y ), and absorber 

durability (small 2y ). 
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Figure 3. Displacement contours of original system and vibration absorber 

  

 The objectives in this example are 1) to maximize the absorber effectiveness by 

maximizing 2y , and 2) to reduce the risk of the normalized amplitude ),( 211 ββy  exceeding 

14.75, if the natural frequencies of the original system and the absorber are uncertain. At the 

same time, we want 11 ≤β  in order to ensure an effective absorber action at “high” excitation 

frequencies; i.e. 
1nωω ≥ . To achieve our objectives, the following RBDO problem is solved  

 ( )
21

21

,max 2, ββµµ
µµ

ββ

y                                  (14a) 

     s.t.   ( )( ) t
fpRyP −=≥≤ 175.14, 211 ββ ,             (14b)                         

            11 ≤β                (14c) 
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where ( )
21

, ββ µµ  are the means of the two random design variables ( )21,ββ , and t
fpR −=1  is the 

target reliability. The target probability of failure is approximated by )( tt
fp β−Φ=  where tβ  is 

the target reliability index and Φ  is the standard normal cumulative distribution function.  

 

In the optimization problem of Eq. (14), we do not use the durability constraint ( ) 60, 212 ≤ββy  

because it is never active in the presence of constraint (14b). 

 

4.2 Implementation of PRRA  

 The PRRA method calculates the probability ( )( )75.14, 211 ≤ββyP  in the RBDO problem 

of Eq. (14), using Eq. (6). The sampling PDF is assumed equal to ( ) ( )2121 ),(21 ββββββ
SSS fff =,  

where ( )1β
Sf  and ( )2β

Sf  are normal distributions with mean 1 and standard deviation equal to 

0.05 which is twice the actual standard deviation of 1β  and 2β .  

The “MCS Hull” in Fig. 4 is a convex hull enclosing all generated sample points from 

),( 2121 ββββ ,
Sf . The dotted domain denoted by “ σ3±  of Sf ,” encloses all sample points of the 

“MCS Hull” which are within σ3±  of ),( 2121 ββββ ,
Sf  where σ  is the standard deviation of the 

sampling distribution. The solid domains denoted by “ σ3±  of f  (shifted),” show representative 

σ3±  clouds of the actual PDF ),( 2121
ββββ ,f  for different mean values of 1β  and 2β . The 

support of ),( 2121
ββββ ,f , centered at any point within the inner dotted domain, is enclosed by the 

support of ),( 2121 ββββ ,
Sf . 
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Figure 4. Sampling PDF and actual PDFs at different designs for the vibration absorber 

  

 According to the PRRA method, it is sufficient to calculate the value of the failure 

indicator function for only a single sample of values, { ),( 21 ii
ββ , i = 1,.., N } of random variables 

),( 21 ββ  in order to estimate the system failure probability for other PDFs. We therefore, 

generate a sample from ),( 2121 ββββ ,
Sf , calculate the value of the limit state ( )211 ,ββy  at each 

sample point, and save the coordinates of the fN  sample values that caused failure. We then 

reuse them to estimate the probability of failure fp̂  for another PDF ),/,(
2121 21 ββββ µµββ,f  by 

reweighing the values of the failure indicator function, as 

 
( )

( )21,

21,

1 ,
,/,1),(ˆ

21

2121

21 ββ
µµββ

µµ
ββ

ββββ
ββ S

N

i
f f

f
N

p
f

∑
=

=
.              (15) 
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4.4 Solution of the RBDO Problem  

Fig. 5 shows the optimum solution of the RBDO problem of Eq. (14) for different values 

of the target probability of failure t
fp , or equivalently the target reliability index tβ . For 

illustration purposes, the PRRA method was used to identify all points in the inner dotted domain 

of Fig. 4 which satisfy the probabilistic constraint ( )( ) ( )tRyP βββ −Φ−=≥≤ 175.14, 211  with 

3≥tβ  (or 00135.0≤fp ). Fig. 5a shows the domain within which 

( )( ) ( )3175.14, 211 −Φ−≥≤ββyP , and Fig. 5b provides a zoomed-in version.  

As we maximize 2y , the probabilistic constraint becomes active, resulting in the 

optimum solution which is indicated by the red points for different values of t
fp . For t

fp  = 

0.00135 ( 3=tβ ), the optimum solution is  ),(
21 ββ µµ  = (0.94828, 1.0405), and for t

fp  = 

0.00115, 0.001, and 0.0009, the optimum solution is (0.94635, 1.04211), (0.9463, 1.04356), and 

(0.94337, 1.04446), respectively. The iso-lines in Fig. 5b indicate the value of 2y . 

The values of the calculated probability of failure at the above optimal designs, were 

validated using a MC simulation with one million sample points. The resulting probabilities of 

failure are 0.001358, 0.00113, 0.000985, and 0.000927, respectively. All values are very close to 

the calculated probabilities, indicating that the implementation of the PRRA method in this study 

provides accurate results. 
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Figure 5a. Optimum solutions for 00135.0≤fp  
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Figure 5b. Optimum solutions for 00135.0≤fp  (zoomed-in) 

  

5. AN INTERNAL COMBUSTION ENGINE EXAMPLE 

 This example addresses a flat head design of an internal combustion engine from a 

thermodynamic viewpoint [33, 34]. Design variables are the cylinder bore b , compression ratio 

rc , exhaust valve diameter Ed , intake valve diameter Id , and the revolutions per minute 

(RPM) at peak power divided by 1000, ω . The goal is to obtain preliminary values for these 

variables that maximize the power output per unit displacement while meeting specific fuel 

economy and packaging constraints. The problem is stated as  
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Find: t
f

t
frEI ppcddb

91
,...,,,,,, ω       

 
to maximize: 120/)],,(),(),(3688[ brcFMEPIdvbrctf ωωηηω −=  

 
where,  

2)2(6)2( })]/(8{[107.9)](

/8[253.097.7)2.9(826.4
−−− ⋅⋅+⋅

⋅++−=

bNVbN

VcFMEP
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ωπωπ
, 

    5.033.0 )/5.1()1(8595.0 ωη vrt Sc −−= − , 
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subject to: 
 

t
fsys pp ≤       

 

where )0)((
9

1

≤=
=

Xi
i

sys GPp U  is the system failure probability and 006539.0=t
fp  is the 

target probability of failure for the system. The nine constraints are listed below: 

       bNG c2.14001 −=               (min. bore wall thickness), 

       5.0
2 )]200/(8[ cNVbG π−=            (max. engine height), 

       EI ddbG −−= 82.03       (valve geometry & structure), 

IE ddG 83.04 −=                (min. valve diameter ratio), 

EI ddG −= 89.05               (max. valve diameter ratio), 

)/)(/4(10428.96.0 25
6 Ics dNVCG ωπ−⋅−=     (max. Mech Index), 

2.13045.07 +−⋅= rcbG     (knock-limit compression ratio), 
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ω−= 5.68G                      (max. torque converter RPM), 

6
9 106.35.230 ⋅−= twQG η           (max. fuel economy), 

with vrtw Sc −−⋅= − )1(8595.0 33.0η , ),(10859.1 36 mmV ⋅=  ,/958,43 kgkJQ =  ,44.0=sC and 4=cN . 

Many of the above expressions are valid only within the limited range of bore-to-stroke ratio of 

3.1/7.0 ≤≤ sb . More information on the problem definition can be found in [33]. All design 

variables are assumed normal with standard deviation and bounds as shown in Table 1.  

 

Table 1. Distribution parameters and bounds of design variables 

 

 

 

 

 

 

 
  
  

 Liang et al. [35] solved this system RBDO problem by using a first-order reliability 

method (FORM) to calculate the probability of violating each of the nine constraints above and 

the upper, second-order Ditlevsen bound [16] to calculate the system failure probability. The 

allowable system failure probability was 0.006539 (same as in this study).  They also solved the 

corresponding component RBDO problem by constraining the probabilities of violating each 

constraint to be less than or equal to a maximum allowable value of 0.00135. For comparison 

purposes, Table 2 presents the solutions of the component and system RBDO problems in [35].  

 Standard 
Deviation 

Lower 
Bound 

Upper 
Bound 

cylinder bore, b , mm  0.4 70 90 
intake valve diameter, 

Id , mm 0.15 25 50 

exhaust valve diameter, 
Ed , mm 0.15 25 50 

compression ratio, rc  0.05 6 12 
RPM at peak power/1000, 

ω  0.25 5 12 
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Table 2. Comparison of results for internal combustion engine example (Liang et al. [35])  

 

 

 

 

 

 

 

 

 

 

 

 

 The sensitivity derivative of the system failure probability to the bore is calculated using 

Eq. (9) and is shown in Fig. 6.  It is observed that the derivative of the system failure probability 

is negative for bore values less than 82.1 mm, zero for 82.1 mm, and positive for greater values.  

This means that the probability of failure is minimized at 82.1 mm. These observations are 

consistent with the results from this study (see optimum value of bore in last column of Table 3). 

Design 
Variables 

Deterministic 
Optimization Component System 

b  83.3333 82.1333 82.1419 
Id  37.3406 35.8430 35.8456 
Ed  30.9927 30.3345 30.3641 

rc  9.4500 9.3446 9.3174 
ω  6.0720 5.3141 5.3598 

1fp   0.00135 0.001448 

3fp   0.00135 0.001665 

4fp   0.00135 0.000811 

6fp   0.00135 0.002370 

7fp   0.00135 0.000232 
sysp   0.00675 0.006539 

Objective f(X) 55.6677 50.9713 51.1023 
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Figure 6. Sensitivity Derivative of System Failure Probability 

 

Table 3. Comparison of results for internal combustion engine example (present study) 

  Initial 
Design 

Cycle  
# 1 

Cycle  
# 2 

Cycle  
# 3 

Cycle  
# 4 

Final 
Design 

b 83.3333 82.9146 82.6377 82.2857 82.2818 82.1537 
dI 35.9744 36.8906 36.4406 35.9906 35.9829 35.846 
dE 30.4287 30.841 30.6644 30.4281 30.4348 30.3777 
cr 9.5042 9.4106 9.4638 9.6138 9.6482 9.7982 D

es
ig

n 
V

ar
ia

bl
es

 

ω  5.4734 5.8377 5.6167 5.4819 5.484 5.378 
pf1 0.4997 0.1476 0.0410 0.0043 0.0044 0.0016 
pf2 0 0 0 0 0 0 
pf3 0 0.2547 0.0460 0.0034 0.0035 0.0017 
pf4 0.0018 0.1268 0.0161 0.0022 0.0017 0.0007 
pf5 0 0 0 0 0 0 
pf6 0.0054 0.0091 0.0045 0.0057 0.0059 0.0030 
pf7 0 0 0 0 0 0 
pf8 0 0.0040 0.0002 0 0 0 
pf9 0 0 0 0 0 0 

sys
fp  (MC) 0.5033 0.4867 0.1060 0.0155 0.0154 0.0067 Pr

ob
ab

ili
tie

s o
f F

ai
lu

re
 

sys
fp  (PRRA) 0.4957 0.4651 0.1082 0.0145 0.0152 0.0065 

 Objective  55.6677 54.4956 53.2927 52.3576 52.4155 52.0682 
 

 We used the deterministic optimum as initial point in the trust-region approach (see Table 

3). Only 100,000 sample points were used in the MC simulation of each cycle. We found that 

100,000 sample points provided good accuracy in this example. The trust-region approach 

81.6 81.8 82 82.2 82.4 82.6
0.1
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∂
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needed four cycles to converge. The relative error of the objective after the 4th cycle is 0.11% 

((52.4155 - 52.3576)*100/52.3576). At this point, the optimization problem of Eq. (10) was 

solved to obtain the final optimum of the last column in Table 3. The 52.0682 optimum is better 

than the 51.1023 optimum in [35] because the present study does not use FORM approximations. 

 The second from last row lists the system probability of failure as calculated by PRRA. 

As expected, the deterministic design has a very high probability of 0.4957 because it is on 

boundary of the feasible domain. The probability of failure drops very quickly to 0.0152 after the 

4th cycle, indicating a fast convergence of the trust-region approach. At the end of each cycle and 

at the initial and final designs, we verified the accuracy of our results with MC simulation with 

one million sample points. The 3rd from last row shows the MC-based sysp  which is very close to 

the PRRA-based sysp .  

 At the optimum, the component probabilities of failure (
1f

p  to 
9fp  in Table 3) indicate 

that only the 1st, 3rd, 4th, and 6th constraints are probabilistically active. The study in [35] 

identified the same active constraints plus the 7th constraint. Based on their reliability values, the 

three most critical constraints (with the highest fp ), are the 6th, 3rd, and 1st with failure 

probabilities of 0.003, 0.0017, and 0.0016, respectively. The same ranking was identified in [35] 

although the values of the component probabilities of failure were slightly different. 

 

6. SUMMARY AND CONCLUSIONS 

A simulation-based, system RBDO methodology has been presented using a trust-region 

approach and probabilistic re-analysis (PRRA). At each cycle of the trust-region approach, the 

PRRA estimates the system probability of failure sysp  at the current design, and the sensitivities 
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of sysp  with respect to the design variables, using a single MC simulation. Both sysp  and its 

sensitivities are smooth in the design space because there is no numerical noise due to random 

sampling. This allows us to use efficient gradient-based optimizers. The developed RBDO 

method can handle problems with multiple disjoint failure regions and multiple most-probable 

points.  

The overall methodology was demonstrated using a vibration absorber example with two 

disjoint failure domains, and a system RBDO of an internal combustion engine. The latter 

example demonstrated that the trust-region approach converges fast to the optimum design. Also, 

both examples demonstrated that the PRRA method calculates the system and component failure 

probabilities accurately, as verified by MC simulation. 

Current and future research concentrates on the development of a metamodeling 

technique using importance sampling, a niching genetic algorithm, and a lazy learning method 

for local metamodeling. The technique provides “accuracy-on-demand” based on a user-

specified, leave-one-out cross validation mean squared error. The metamodel will be used in the 

proposed RBDO method to further improve its computational efficiency. 
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