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1. Abstract  
In this paper, we attempt to address the cutting-edge problem of robust shape and topology optimization (RSTO) 
of compliant mechanisms with consideration of random field uncertainty, such as material property. The proposed 
approach is based on the state-of-the art level set methods for shape and topology optimization and the latest 
research development in design under uncertainty. Conventional robust design, usually posed as a continuous 
optimization problem in finite dimensions, is extended to an infinite-dimensional shape and topology optimization 
problem and uncertainty is considered as a new dimension in addition to space and time. We illustrate that a 
level-set-based RSTO problem can be mathematically formulated by expressing the statistical moments of a 
response as functionals of geometric shapes and random field.  To characterize the high-dimensional random-field 
material uncertainty with a reduced set of random variables, the Karhunen-Loeve expansion is employed, which is 
essentially a spectral representation of the random field using a reduced set of random variables and the 
eigenfunctions of its covariance function as expansion bases. Once the reduced set of random variables is 
identified, the univariate dimension-reduction (UDR) quadrature rule is employed for calculating statistical 
moments of the design response. The combination of the above techniques not only greatly reduces the 
computational cost in evaluating the statistical moments but also enables a semi-analytical approach that 
introduces the shape sensitivity of the statistical moments using shape sensitivity analysis. The application of our 
approach to compliant mechanism design shows that the proposed RSTO method can lead to designs with 
completely different topologies and superior robustness compared to their deterministic counterparts. Although 
the current contents of this paper are focused on Gauss-type material uncertainties, the proposed method is generic 
and can be easily extended to robust topology optimization subject to other types of uncertainties, such as 
Gauss/Non-Gauss type loading and geometric uncertainties. 
 
2. Keywords: level set methods, robust design, topology optimization, shape optimization, uncertainty, 
material property, random field, compliant mechanisms 
 
3. Introduction 
Compliant mechanisms (CM) are elastic structures capable of transmitting energy and motion through structural 
deformation [1].  They are natural candidates for Micro-Electro-Mechanical Systems (MEMS) [2], high-precision 
machines [3] and surgical tools [4]. Structural optimization has played an important role in complaint mechanisms 
design, which aims to achieve cost-effective designs for a given amount of material. Based on the nature of an 
optimization task, structural optimization can be categorized into size, shape and topology optimizations, among 
which topology optimization is the most efficient way due to its capability of finding the optimal material 
distribution for a pre-specified design objective. The underlying idea of the existing topology optimization 
techniques [5] is to recast the design problem as an optimal material distribution problem so that the configuration 
of the design can fulfill the requirements measured quantitatively by an objective function. The differences among 
the aforementioned approaches lie in their representations and modeling schemes.  
 
For designing compliant mechanisms, representative works in topology optimization include the ground structure 
based compliant mechanism optimization method by Kota [6], the homogenization-based methods, including the 
homogenization method and its variant SIMP (simple isotropic material with penalization) [7], and more recent 
work on the level set approach by Allaire et al. [8] and Wang et al.[9]. Despite large quantities of research 
conducted in topology optimization of compliant mechanisms with linear or nonlinear analysis, research in 
topology optimization of compliant mechanism under uncertainty has been limited.  On the other hand, physical 
quantities such as loading and material properties at micro scale are random by nature but their impact on the 
overall design performance can not be ignored. To obtain robust and reliable CM designs, the input uncertainties 
should be characterized and its effects on the output performance should be quantified.  Recent years have seen an 
emerging trend in topology optimization research to consider various uncertainties [10-12]. Olhoff et al. first 
integrated reliability analysis into SIMP method and introduced a new strategy called the reliability-based 
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topology optimization (RBTO) [12], in which a probabilistic constraint is introduced but the objective is still 
treated as deterministic. Maute and Frangopol applied RBTO to MEMS-oriented compliant mechanism designs 
[10]. Kogiso et al. [11] proposed a sensitivity-based method for robust design of compliant mechanisms under 
loading uncertainties, where the variations of the output displacement with respect to the uncertainty of the 
direction of input forces are evaluated using the first-order derivative. Conti [13] is the first to combine the level set 
methods with stochastic programming techniques for structural optimization under loading uncertainties. Due to 
the computational challenges, in most of the current topology optimization work, material (or loading) uncertainty 
is simply treated either as a constant or as a random parameter varying uniformly across a spatial domain.  For 
some engineering applications this is a valid assumption, but for many others, especially when designing 
compliant mechanisms at micro scale, the material property should be more realistically treated as a random field 
with spatial variation. 
 
Our research objective in this work is to develop a mathematically rigorous and computationally viable approach 
that enables robust structural optimization of compliant mechanisms with the consideration of random-field 
uncertainty.  Our special emphasis is on developing a robust shape and topology optimization (RSTO) method 
based on the level set approach, which provides a generic boundary representation model that is useful for both 
shape and topology optimizations.   This paper is organized as follows: A brief review of robust optimization and 
fundamentals about level set methods for RSTO are presented in Section 4. After that, uncertainty characterization 
and propagation using the spectral method and the Gauss-type quadrature will be introduced in Section 5. In 
Section 6, the shape derivatives of the statistical moments are derived using the adjoint variable method. The 
numerical algorithm for RSTO together with the demonstration example is provided in Section 7. Conclusions and 
future works are discussed in the last section. 
 
4. Level-Set Based Robust Shape and Topology Optimization (RSTO) 
 
4.1. Robust design models 
Conventional robust design, pioneered by Taguchi [14], refers to a class of methods for improving quality and 
reliability by designing a product or process so that it is robust (insensitive) against variations in uncontrollable 
noise variables [15, 16]. The robust design problem typically involves a nonlinear programming formulation [17, 
18] in which the objective is to make suitable tradeoff between ‘optimizing’ the mean performance µ  and 
minimizing the performance variance 2σ  (or the standard deviationσ ), as shown in Figure 1.  

 
Figure 1: Robust design model [18]. 

robustµ

f (X)
[ , ]

. . 0
f f

g g

minimize

s t k

µ σ

µ σ+ ≤

X

 
The common robust design objective function balances between the mean and variance of the objective response 
through the choice of the constant k  [19, 20]. Functions of the form kµ σ+ also play a role when we have 
constraint responses that must satisfy certain conditions with specified probabilities. When the constraints relate to 
the failure of a product, the constraint evaluation is often referred to as reliability assessment [21-23].  A complete 
review of robust design optimization can be found in literatures [18, 24]. 
 
4.2. Level Set Methods for Shape and Topology Optimization 
In the past two decades, level set methods have thrived to be powerful numerical tools with many applications in 
different fields [25, 26]. The advantage lies in their capability of precisely describing closed boundaries with 
dynamic variations, which enables easy ‘capture’ of the boundary on an Euler grid by solving a Hamilton-Jacobi 
partial differential equation [27]. Sethian and Wiengmann [28] first combined level set methods with the immersed 
interface methods for structural boundary design, where the former was used to represent the geometric boundary 
of the design and the latter was used for elastic analysis. Osher and Santosa [29] introduced the shape gradient of 
the objective functional into the level set model and established a link between the shape gradient and the velocity 
field. This work was further completed by Allaire et al. [8], who derived the shape sensitivity of compliance and 
geometric advantage by employing the adjoint variable method.  Building upon the material derivative method, 
Wang et al. identified a meaningful link between the velocity field in the level set method and the general structural 
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sensitivity analysis [27]. The ‘color level set’ model proposed by Wang [30] made possible the topology 
optimization of multi-material compliant mechanisms in the level set framework [9]. 
As its name implies, level set method implicitly represents the boundary as the zero level set of a one-higher 
dimensional surface ( )xφ , which is called the level set function. In the level set model, the domain is defined as 
three parts according to the value of the level set function: 

( )
( )
( )

( ) 0 : ( ) \
( ) 0 : ( )
( ) 0 : ( ) \

x t x t D
x t x t
x t x t

φ
φ
φ

> ∈⎧
⎪

Ω
= ∈∂Ω⎨

⎪ < ∈Ω ∂Ω⎩

,                                                           (1) 

where  denotes the design domain; and tD R+∈ is time. The domain and a sketch of level set representation are 
shown in Figure 2. The greatest advantage of implicit representation lies in its ability of dealing with topological 
changes, such as splitting and merging of the boundary, in a natural manner. 
 
By calculating the material derivative [31] of the equation ( ) 0xφ = , we get the following equation: 

( ) 0x
t
φ φ∂
+∇ ⋅ =

∂
V ,                                                                        (2) 

where ( ) dxx
dt

=V  is the velocity vector field. Considering φ
φ

∇
=
∇

n  and ( )φ φ⋅∇ = ⋅ ∇V V n , we can write 

equation (2) as  

( ) 0nV x
t
φ φ∂
+ ∇ =

∂
.                                                                        (3) 

 
(a) 3D level set function (b) corresponding 2D geometry 
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Figure 2: A 2d boundary embedded as the zero level set of a 3d level set function 
 
These two Hamilton-Jacobi type partial differential equations (PDEs) are the well-known level set equations [25, 
26, 32]. Based on the level set theory, the topology optimization problem is transformed into a problem of finding 
the steady-state solution of the Hamilton-Jacobi equation. To get a feasible steady-state solution of equations (2) 
and (3), an important issue is to find the velocity field. More details on calculating the shape derivative and 
identifying the velocity field in the RSTO problem will be provided in Section 5.  
 
4.3. Setting an RSTO Problem for Compliant Mechanisms Design 
In robust compliant mechanisms design, the objective is to optimize the performance subject to variations of 
random quantities. The performance index is the geometric advantage (GA) of the compliant mechanism, which is 
defined as the ratio between the output and input displacement. Uncertainty is introduced as a new dimension in 
addition to space and time [33], while the solution is sought in this extended space. We use z  to denote the 
random quantities, and assume z being independent of the design variable - shape . The design response 
(performance) under uncertainties can be correspondingly expressed as a functional

Ω
( , , )J u zΩ  of the random 

quantities  in addition to the geometric shape z Ω  and state variable , that is  u
( )
( )

( , )
( , , )

( , )
out

in

u z
J u z

u z
∆ Ω

Ω = −
∆ Ω

,                                                                   (4) 

where and  represent the displacements at the input port and the output port, as shown in Figure 3; the 
performance function 

in∆ out∆
( , , )J u zΩ  is the geometric advantage. 

3 



 
 

 
Figure 3: A schematic of a CM with input  

displacement in∆  and output displacement out∆ [34] 
 
The random quantity considered here can have field variability to form a random field or random process but it can 
always be discretized into a finite number of random parameters, which will be further explained in Section 5.2. 
Thus equation (4) is general enough to cover random field or random process. The mean ( ( , , ))J u zµ Ω  and 
standard derivation ( ( , , )J u zσ Ω of the performance index ( , , )J u zΩ in equation (4) can be further expressed as 
follows 

( )
( )

( ) 2

( , )
( ( , , )) ( ) ( , , ) ( ) ,

( , )

( ( , , )) ( ) ( , , ) ( , , ) ,

out

in

u z
J u z p z J u z dz p z dz

u z

Var J u z p z J u z J u z dz

µ

µ

∆ Ω
Ω = Ω = −

∆ Ω

Ω = Ω − Ω⎡ ⎤⎣ ⎦

∫ ∫

∫
                                 (5)  

where  is the joint probability density function (p.d.f.) of the random variables. In this way, a general RSTO 
problem is set as follows: 

( )p z

* ( , , ) ( ( , , )) ( ( , , )
:

,

,
obj

Minimize
J u z J u z k J u z

Subject to
Volume constraint

Perimeter constraint on

µ σΩ = Ω + Ω

Ω = Ω

∂Ω

                                     (6) 

                together with the partial differential equations (PDEs) governing the physical system. 
 
5. Uncertainty Quantification and Propagation in RSTO 
 
5.1. Random Variables and Random Fields   
An important issue in RSTO is how to model the input uncertainties. Following the probability theory, we can 
model uncertainties in structural optimization either as random variables or random fields [35]. The former can be 
considered as the constituting element of the latter, as shown in Figure 4. Random variables and random fields can 
be used to model different physical quantities. For example, when considering a concentrated random load, we can 
model its magnitude and direction as two random variables [36], either correlated or independent. But for 
problems with properties varying across the spatial domain, the physical quantities should be more realistically 
modeled as random fields [35]. A random variable often times can be conveniently characterized by the mean and 
variance of its distribution. To characterize a random field, a third factor needs to be taken into account, that is, the 
correlations (dependency) among the random variables in this random field. When there is no correlation or the 
correlation is very weak, the random field is more like the ‘white noise’ in signal analysis and Monte Carlo method 
can be used to model such a random field. When the correlation is strong, spectral methods [37] can be employed 
to quantify the uncertainty. In this work, we use a Gaussian random field with a relatively large correlation to 
describe the uncertain material field. To characterize the random-field material uncertainty with a reduced set of 
random variables, the Karhunen-Loeve (K-L) expansion approach is employed.  To efficiently propagate 
uncertainty in a RSTO process, we propose to use the univariate dimension reduction (UDR) quadrature formula 
which is applicable to arbitrary probability distributions. The uncertainty modeled by a random field needs to be 
discretized into a finite number of random variables for practical manipulations. In this section, we first discuss the 
discretization of random fields using the K-L spectral representation and the propagation of uncertainty based on 
the UDR quadrature formula. These methods are further incorporated into the framework of level-set based RSTO. 
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(c) A realization of a random field with a strong correlation  

µ

X 

kσ

(a) A random variable  

(b) A realization of a random field with no correlation  
among random variables  

 
Figure 4: A Random vari

 
.2. Karhunen-Loeve Expansion

proach to represent a random field using eigenfunctions of the 

able and a random field 
among random variables  

5  of Random Field 
The Karhunen-Loeve expansion [37] is a spectral ap
random field’s covariance function as expansion bases.  Let ( ),g x ω  : D×Θ→ be a random field defined over 
a spatial domain D , which is a function of spatial coordina rete x. He  ω∈Θ  denotes an element of the sample 
space and is used to indicate that the involved quantity is random. ( ),g x ω  can be represented by the K-L 
expansion as follows: 

( ) ( ) ( ) ( )
1

, i i i
i

g x g x g xω λ ξ
∞

=

= +∑ ω ,                                                      (7) 

where ( )g x  is the mean function. iλ  and ( )ig x  are the ith eigenvalue and
ng in

 eigenfunction obtained from the 
followi tegral equation: 

( ) ( ) ( )1 2 1 1 2, i i iC x x g x dx g xλ=∫D
,                                                            (8) 

where ( )1 2,C x x  is the spatial covariance function of the random field ( ),g x ω .  The random field variables, 

( )iξ ω  in E 7) are orthogonal random variables with zero mean and un nce. That is,  qn. ( it varia

( )( ) ( ) ( )( )0  and i i j ijE Eξ ω ξ ω ξ ω δ= = .                                                (9) 

The orthogonality of ( )iξ ω  is a unique feature of the K-L expansion. ( )iξ ω  can be calculated as: 

( ) ( ) ( )( )1 , ( )i iD
i

g x g x dxξ ω ω= −                            g x
λ ∫               (10) 

The second order statistics of ( )iξ ω  in Eqn. (9) can be derived from Eqn. (10).  Based on sampling and spatial 

qn. (1integration at the right side of E 0), samples of ( )iξ ω  can be generated to infer the distribution of the random 

field variable, ( )iξ ω . The K-L expansion is the opt mong finite representations using orthogonormal bases 
in the sense tha ean square error caused by a truncation of the expansion is minimized [37]. 
 
.3. Univariate Dimension Reduction (UDR) quadrature method for statistical moments calculation 

imal a
t the m

8] from one 
5
Multivariate quadrature formulas for multiple random variables can be built in many different ways [3
dimensional quadrature formulas [59].  With the univariate dimension reduction (UDR) method [39], the 
multivariate function ( )g X  is approximated by a sum of univariate functions which depend on only one variable 

with the other variable d to their mean values. Let the univariate functions denoted by _ is fixe g , and then ( )g X  is 
approximated as follows: 

( ) (ˆg gX X) ( ) ( ) ( ) ( ) ( ) ( )1 1 _
1 1

, , , , 1 , , 1 .
n n

i n n i i
i i

g X n g g X n gµ µ µ µ
= =

= − − = − −∑ ∑ Xµ    (11) 

Here independence of iX  is assumed and it is known that the error of this approximation is mainly contributed by 
the interaction effects among variables [40].  Since iX  are mutually independent, ( )_ i ig X  are also independent 
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with each other and the statistical moments of ( )ĝ  can be approximated con ly from moments of 

(
X venient

)_ i ig X , as follows [41]: 

(Mean) )                                                   (12) 

(STD) 

( ) (
_ˆ

1

1
i

n

g g
i

n gµ µ
=

= − −∑ Xµ , 

_

2 2
ˆ

1
i

n

g g
i

σ σ
=

= ∑ . 

The moments of univariate functions are ca  using one dime ional Gauss-type quadrature formula.  The lculated ns
number of ( )g x  evaluations for this calculation is 1 1nm m+ + +  where im  is the number of nodes used for the 
calculation oments of _ iof m g . It needs to be note DR me d might be the most efficient, the 
method might lose accuracy hen there exist strong interactions between random variables [42]. 
 
. Shape Derivatives of Statistical Moments 

d that though U tho
 w

s, to minimize the objective functional formulated in equation (6), 
6
In optimization search of solving RSTO problem
we need to quantify the change of the objective functional *( , , )J u ωΩ with respect to a small variation of the 
shapeΩ  (design), which can provide us with necessary inform pdating the current design. This process 
is called shape sensitivity analysis and the result is called shape derivative [43]. In this section, a semi-analytical 
shape sensitivity analysis approach is presented. The mean and variance of a response are first numerically 
discretized using the multivariate Gauss-type quadrature approach discussed in Section 3.3. From an optimization 
point of view, the multivariate Gauss-type quadrature essentially transforms the RSTO problem into a weighted 
summation of a series of deterministic topology optimization subproblems. The shape sensitivity of each 
subproblem is then derived using the adjoint variable method and calculus of variation. 
Following this approach, equations (6) can be approximated as follows by using the UDR formula in equations (11) 

ation for u

and (12).  
n

( ) (
_

_

1

2 2

1

1
i

i

)J J
i

n

J J
i

n gµ µ

σ σ

=

=

= − −

=

∑

∑

ωµ
                                                            (13) 

where _ iJ  is the objective function value calculated with iω  as a realization of the random variables and other 
 varandom riables fixed to their mean values; n is the number of quadrature points. We address the general problem 

using the variational method and the techniqu s proposed in [8, 44]. With the assumption that the random variables 
are independent of the design variables Ω , the shape derivatives of the mean and variance of the performance 
function ( , , )J u

e

ωΩ  are expressed as follo s: 

[ ]
n

D µΩ Ω=

w

( ) ( )
_

1

1
iJ J

i

D n D gµ Ω
=

⎡ ⎤ − − ⎡ ⎤⎣ ⎦⎣ ⎦ ωµ                                                 (14) 

Similarly, the shape derivative of the variance can be expressed as:  

i=

∑

_

2 2
n

J JD Dσ σΩ Ω
1

i
⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦∑                                                                   (15) 

The final shape derivative of the objective functional * ( , , )J u ωΩ  is

2

1 1

( ( ))
i i

n n

J J
i i

D J u D k Dσ ω µ σΩ Ω Ω Ω Ω
= =

 

[ ]* ( , , ) ( ( , , )) , ,D J u D J u kω µ ω [ ]
_ _

⎡ ⎤ ⎡ ⎤⎡ ⎤Ω = Ω = +Ω +⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑ ∑       (16) 

With certain mathematical manipulations, the shape sensitivity of * ( , , )D J u ωΩ ⎡ ⎤Ω⎣ ⎦  can be transforme

istic scenarios d

d into a 

weighted summation of the shape sensitivities of a series of determin enoted as [ ]( , , )iD J u ωΩ Ω . 

[ ]( , , )iD J u ωΩ Ω reveals the underlying relations between the design variable shape Ω  an  
, )i

d the objective
functional ( ,J u ωΩ  under a specified load scenario with the random parameter iω . or more details of 
sensitivity a  level-set based topology optimization, please be referred to our vious papers [8, 9, 27, 
34]. In terms of a linear elastic problem, the final form of 

F
nalysis for pre

[ ]( , , )iD J u ωΩ Ω  can be formulated as follows [9, 34]: 
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[ ] ( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2 2
1 1 2 2

( , , )i ijkl ij kl ijkl ij kl ijkl ij kl n
i o i o

J J J JD J u E u u E u u E u u V ds
u u u u

ω ε ε ε ε ε εΩ Γ

⎧ ⎫⎛ ⎞∂ ∂ ∂ ∂⎪ ⎪Ω = + + +⎨ ⎬⎜ ⎟∂ ∂ ∂ ∂⎪ ⎪⎝ ⎠⎩ ⎭
∫

(17) 
where and  denote the displacement field caused by the unit force and respectively;  denotes the 
displacement at the input port in the same direction as ;  denotes the displacement at the output port in the 

same direction as the output force [9, 34]. With equation (17), 

1u 2u inf outf 1iu

inf 1ou

_ iJD µΩ
⎡ ⎤
⎣ ⎦ and 

_

2
iJD σΩ

⎡ ⎤
⎣ ⎦ can be easily calculated 

using one dimensional Gauss-type quadrature formula. Substituting 
_ iJD µΩ

⎡ ⎤
⎣ ⎦ and into equation (16), 

we obtain the shape gradient of the objective functional. 
_

2
iJD σΩ

⎡
⎣

⎤
⎦

 
7. RSTO Algorithm and Demonstration Examples 
 
 7.1. Numerical Algorithm 

Determine quadrature points and 
corresponding weights 

Calculate statistical moments of the 
response

Calculate shape sensitivity at each 
quadrature points (subproblem)

Calculate shape derivative of 
statistical moments

Update the design via Hamilton-
Jacobi equation

Converge?

Set the initial design 
and boundary 

conditions

Exit

Setting the velocity field using 
steepest descent method

Use K-L expansion to quantify the 
loading/material uncertainties 

 
Figure 5: Flowchart of the algorithm 

 The algorithm for RSTO is shown in Figure 4. After setting 
the initial design and boundary conditions, the K-L 
expansion method introduced in Section 5 is first employed 
to reduce the dimensionality for representing the 
uncertainties in loading and material. For the reduced set of 
random variables, the locations and weights of nodes are 
determined next based on the Gauss-type quadrature for 
calculating the mean and variance of the performance 
function. The shape sensitivity is then calculated at each 
integration node.  Therefore, the computational cost is 
proportional to the number of nodes. The velocity field is set 
using the steepest descent method and the geometry is 
updated via Hamilton-Jacobi equation. This loop will iterate 
until the convergence criterion is satisfied.  
 
7.2. Demonstration Example -A 3D Micro-Gripper under a 
Random Material Field 
 A 3D micro-gripper is used as a demonstrative example, 
which is subject to a spatially-varying material property 
field across the design domain. The boundary condition of 
the problem is shown in Figure 6(a): the four corners of the 
left side are fixed with a horizontal force applied at the 
center of the left side; two vertical output displacements are 
expected at ports 1 and 2. The objective function is the 
geometric advantage (GA), which is defined as the ratio of 
the output displacement over the input displacement. For 
more details about the setting of a compliant mechanism 
optimization problem, please be referred to papers [9, 34, 
45]. The dimensions of the design domain are 1-by-0.6-by-1. 
The material property field (Young’s Modulus) is assumed 
to take a normal distribution with mean equal to 1 and 
standard deviation 0.3. An exponential function is 
employed to describe the correlation between any two 
spatial points in the random field as follows: 

1 2exp
X X

C
d

⎛ −
= −⎜

⎝ ⎠

⎞
⎟ .                                                      (18)      

Here 1 2X X−  is the Euclidean distance between the two points and d is the correlation length which is set to be 
0.5 in this example. Due to the symmetry, only the upper part of the design is analyzed in the optimization process. 
The level set function is evolved on a 101-by-61-by-51 Euler grid, and the design domain is discretized using about 
5000 finite elements for elastic analysis. Due to the strong correlation, three eigenvectors are used with K-L 
expansion in uncertainty quantification and the random material field can be quantified as follows: 
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( ) ( ) ( ) ( )
3

1
, i i i

i
g x g x g xω λ ξ

=

= +∑ ω                                                           (19) 

Three quadrature nodes are used in each eigenvector direction based on the UDR approach to uncertainty 
propagation. The final design of RSTO is shown in Figures 6 (c) and (d). The corresponding deterministic 
topology optimization (DTO) result is shown in Figures 6 (e) and (f), where the Young’s Modulus is a constant. 
The performances of robust and deterministic designs are listed in Table 3. We apply two different material fields 
to both the robust and the deterministic designs.  A clear observation is that robustness is achieved at the cost of 
sacrificing performances.  
However, according to Table 3, 
the geometric advantage of the 
robust design is more stable 
(varying from -0.065 to -0.059) 
under different material fields, 
while the geometric advantage of 
deterministic design degenerates 
when the material property field 
varies (varying from -0.070 to 
-0.055).  When comparing the 
geometries of the robust and 
deterministic designs, we find the 
concepts obtained are quite 
different:  the robust design 
consists of shorter but obviously 
thicker bars than its deterministic 
counterpart. It needs to be pointed 
out that the ‘robustness’ here is 
only in a mathematical sense (a 
smaller variation of geometric 
advantage). Since the stress 
constraint is not considered in 
current formulations, the robust 
design achieved in this example 
possesses more de facto hinges, 
while the deterministic design 
possesses more distributed 
compliance. This makes the stress 
concentration easier to occur in 
the robust design than the 
deterministic design; a pitfall can 
be addressed by adding stress 
constraints into the problem 
formulation.   
 

 
 
 

 
Table 3: Geometric Advantages of Robust and Deterministic Designs under Different Material Property Fields 

 Parameters of  
Material Fields Volume Ratio Robust Design Deterministic Design

Material 
Field 1 1E =  0.090 -0.065 -0.070 

Material 
Field 2 1Eµ = , 0.3Eσ = ,  0.5d = 0.098 -0.059 -0.055 

 
5. Conclusions 
We integrated robust design with level set methods to implement robust shape and topology optimization with 
demonstration to robust compliant mechanism design subject to random material field. The Karhunen-Loeve 

 

 
(a) Boundary condition (b) Initial design 

  
(c) Robust design (d) Isometric view of the robust design 

from another viewpoint 

  
(e) Deterministic design (f) Isometric view of the deterministic 

design from another viewpoint 
Figure 6: Robust (c-d) vs. Deterministic (e-f) optimization of a 3d 

micro-gripper under a random material field. 

1

2
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outf
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expansion is employed to characterize random-filed uncertainty, which is essentially a spectral representation of 
the random field using a reduced set of random variables and the eigenfunctions of its covariance function as 
expansion bases. Once the reduced set of random variables is identified, the univariate dimension-reduction (UDR) 
quadrature rule is then employed for calculating statistical moments of the design response. The combination of 
the above techniques not only provides a computationally viable approach in evaluating the statistical moments, 
which otherwise would be computationally formidable, but also enables a semi-analytical approach that introduces 
the shape sensitivity of the statistical moments using the adjoint variable method and calculus of variation. The 
shape derivative is seamlessly integrated with a level-set-based topology optimization framework via the steepest 
descent method. The benchmark example shows that the results from RSTO may be quite different from that of the 
deterministic topology optimization and the RSTO designs are more robust than deterministic designs under 
uncertainty. Throughout our research, we also found that uncertainty is not the only factor that has an impact on the 
topology of the final design; the interaction between the boundary condition and the uncertainties determines the 
topology of the final design to a large extent (keeping other conditions fixed). The impact of such interactions still 
needs further investigations in our future research.   
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