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Abstract  
To enhance airplane design quality, the theory and application of Uncertainty Multidisciplinary Design 
Optimization (UMDO) is systematically studied in this paper. Firstly, the UMDO theory is briefly introduced. 
Secondly, the UMDO procedure is comprehensively studied. Based on the Concurrent SubSpace Optimization 
(CSSO) procedure, a Game theory Based Composite SubSpace Uncertainty Optimization (GBCSSUO) procedure 
is proposed. Multi-protocols are utilized synthetically to organize discipline relationship of subspace optimization 
of CSSO, so that the discipline organization can be more rational and flexible. An example is used to test the 
efficacy of the proposed method. Thirdly, the application of UMDO in airplane system design is studied. 
GBCSSUO is adopted to integrate and resolve the UMDO problem of a passenger airplane. The optimization 
result confirms the feasibility and validity of the proposed method, and offers a robust and reliable optimum 
system design scheme of the passenger airplane. Finally, the research work in this paper is summarized. 
Keywords: Uncertainty Multidisciplinary Design and Optimization; UMDO Procedure; Concurrent Subspace 
Uncertainty Optimization; Game Theory; Airplane System Design 
 
1. Introduction 
For complex engineering systems, Multidisciplinary Design Optimization (MDO) is an effective method to solve 
the highly coupled design problems, as it can make full use of the inner multidisciplinary coupling relationship of 
systems and achieve optimum designs. In the realistic world, uncertainties exist objectively and greatly influence 
the design and manufacture. If uncertainties are carefully taken into consideration in the design phase, the 
reliability and robustness of the product would be efficiently enhanced. So in the traditional MDO, uncertainties 
should be reasonably considered and treated, and Uncertainty Multidisciplinary Design Optimization (UMDO) 
method should be adopted to solve the complex engineering design problems [1-3]. The difficulties of UMDO 
mainly include calculation burden and optimization efficiency. Lots of research work has been done to solve these 
problems, such as efficiency improvement of UMDO procedure and optimization solving method, accuracy 
improvement of approximation models and uncertainty analysis, etc. In this paper, the research work is focused on 
UMDO procedure. 
 
2. UMDO Theory 
UMDO is referred to the method which is used to solve the uncertainty design optimization problem of complex 
system by fully considering the coupling relationship and uncertainty propagation between disciplines. By 
utilization of UMDO procedure which integrates disciplinary models, uncertainty analysis methods, and 
optimization methods effectively, and by use of design of experiment (DOE) and approximation modeling 
methods, the calculation burden and organization complexity can be greatly reduced. For an uncertainty 
multidisciplinary design optimization problem, the general flowchart of solving procedure is depicted in Figure 1. 
From the diagram we can see that the solving process is mainly consisted of the following two parts. 

(1) Uncertainty system modeling 
Uncertainty system modeling includes system modeling and uncertainty modeling. System modeling refers to 

the mathematical modeling procedure of system and disciplines, and mathematical description of optimization 
problem, including the design variables, optimization objectives, robust performance objectives, constraints and 
reliability requirements, etc. Uncertainty modeling refers to the classification and quantification of uncertainties 
with uncertainty mathematical theory and methods [4, 5]. To simplify uncertainty problem and reduce calculation 
burden, it is generally necessary to utilize sensitivity analysis to screen out the factors which have significant 
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importance on system design. 
(2) UMDO procedure [6] 
UMDO procedure refers to the executive sequence of system analysis, system decomposition, DOE, 

approximation modeling, design space searching algorithm, uncertainty analysis etc [7, 8]. It is the organization 
method of UMDO realization in computing environment. The reasonableness and effectiveness of the UMDO 
procedure directly influence the performance of UMDO. It is an important method to reduce calculation burden 
and improve optimization efficiency. So it is the research focus in this paper. 
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Figure 1: Flow Chart of Uncertainty Optimization 

 
3. GBCSSUO Method 
The UMDO procedure greatly influences the optimization efficiency of UMDO, especially in the non-hierarchical 
complex system design and optimization problem. To develop the UMDO procedure, the traditional deterministic 
MDO procedures can be used for reference [9, 10]. In this paper, the deterministic MDO procedure CSSO is 
referenced. Since CSSO was proposed by Sobieski in 1988, it has been widely studied and improved. In 1996, 
Sobieski and Batill proposed Response Surface based CSSO (CSSO-RS), which decouples disciplines by means of 
approximation models and improves CSSO’s application agility [11]. CSSO has been successfully applied in 
many complicated engineering design and optimization problems. It realizes the decoupling of complicated 
disciplinary relationship and enables each discipline designer to design and optimize with their own unique and 
advanced tools independently. However, it has ignored the following two issues in the realistic design process: 

 Different disciplines may have quite different influence on system performance. In other words, each 
discipline has different degree of importance on system design and optimization.  

 The dependent or coupled degree of different disciplines may be quite different.  
But in CSSO procedure, all the subspaces are equally treated in the subsystem level optimization. All the 

disciplines are decoupled from each other with the same method and optimized concurrently with the same 
importance. The ignorance of inherent distinction between disciplines may greatly influence the feasibility and 
validity of subsystems organization, and further exert influence on the optimization efficiency. For example, if one 
discipline has outstanding importance on the system design and others’ are very weak, it is much more feasible to 
have the others’ design work done following the “chief” one’s design than have all the disciplines designed at the 
same time and then make the designs from each discipline consistent through repetitious iterations of system level 
coordination. To address this problem, we resort to game theory to ameliorate the organization form of 
subsystems. 
 
3.1 Game Theory [12-13] 
Game theory has typically been used in economics and business. In recent research, it began to be applied in 
system design. In a system perspective, a game consists of multiple decision-makers who each control a specified 
subset of system variables and who each seek to minimize their own cost functions subject to their individual 
constraints. Game theory is the study of the strategic interaction (decision strategies) of players in such games. 
From the definition above it is clear that a design process with multiple disciplinary teams is very similar with a 
“game”, so researchers abstract design processes as games and disciplinary design teams with their associated 
analysis/synthesis tools as players. By exploring multi-player strategic interaction models, researchers try to 
improve the design efficiency and enlarge design profits in complex multidisciplinary design. 

There are three fundamental game protocols applicable to design, including cooperative, noncooperative, and 
sequential (Stackelberg leader/follower) constructs. 

 Cooperative: This model means complete cooperation occurs when each designer is aware of all the others 
and the decisions made by each. For system design, it means all the designers share their information and the 
transfer of information is seamlessly. Cooperative construct can be further divided into two types. One is Full 
Cooperation, and the other one is Approximate Cooperation. The former one means full information 
communication between disciplines, corresponding to all-in-one optimization procedure in MDO. The latter 
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one means that discipline designer carries out work independently, and obtain information needed from other 
disciplines by means of global sensitive equation (GSE) or other approximation models. It resembles CSSO. 
The cooperative design solution is also called Pareto solution, which means all the disciplinary designers 
can’t improve their own objectives simultaneously. 

 Noncooperative: In this model, design teams usually act in their own interest. They may not get the necessary 
information they need to make decisions, so each design team has to make assumptions, many times worst 
case, about the information they need from other teams because of any kind of information isolation. This 
model is also known as Nash formulation, and the design solution is called the Nash solution. In real 
engineering design situations, different discipline teams may have their own optimization objectives. But in a 
systematic perspective, they also act as a whole collectivity and have a common goal to achieve, which is the 
performance of the whole system. So it is quite different from the noncooperative model, in which different 
teams only consider about their own interest and make decision to maximize their own profits rather than the 
interest of the whole group. So in this paper, we don’t discuss this model.  

 Sequential (Stackelberg leader/follower): In this model, the dominant leader team firstly makes decision, and 
then passes it to the next team. The leader needs make some assumptions about the behavior of its follower, 
and the follower makes its decision rationally based on the design result of its preceding team. The 
assumptions of the follower’s behavior are made based on the rational reaction set (RRS), which also is the 
only link between the leader and the follower. RRS can be considered as a mapping from the leader’s decision 
to the follower’s reaction set. The math expression is 

 * *( ) { | ( , )= min  ( , )}
follower follower

leader follower follower follower leader follower follower leader followerx
RSS x x f x x f x x

∈
= ∈

X
X  (1) 

where  followerf  is the optimization objective of the follower discipline, x  is the design decision and X  is the 
design space. The optimization model of the leader can be written as 

 
min ( , )

. . ( )
leader leader follower

follower leader

f x x

s t x RSS x∈
 (2) 

The RRS can be constructed by DOE and approximation approach. 
Considering system design practice, only cooperative and sequential protocols are studied in this paper. 

 
3.2 GBCSSO Procedure 
To utilize game theory protocols to organize disciplines in subspace optimization of CSSO, the characteristics of 
each protocol should firstly be analyzed. Full cooperation can consider all the disciplines at the same time, but the 
calculation burden is very great in complex system design problem. So this type is only feasible for the 
optimization with very few disciplines and close coupled relationship. Approximate cooperation can improve 
discipline independency and reduce calculation time by concurrent discipline design, but it augments the 
coordination complexity as well, which may greatly decrease optimization efficiency. Sequential type costs much 
more time in a single optimization circle than the concurrent optimization, but it can maintain the design 
independency of the leader and improve the design consistency between the leader and the follower. So it can 
mitigate the coordination complexity and may reduce the whole optimization cycle number, so as to decrease the 
calculation burden. To sum up, each protocol has its merits and demerits. We should synthesize multi-protocols to 
make full use of each type’s advantages and organize discipline relationship effectively according to specific 
design situation. This method we propose is called game theory multi-protocol based discipline organization 
method. 

According to above analysis of protocols, we propose two types of multi-protocol integration forms. It is 
illustrated in Figure 2.  

Figure 2: Composite subspace organization relationship diagram 
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In form (a), there is one leader subspace and several followers. The relation among follower subspaces is 

approximation cooperation. Each follower subspace may be consisted of several disciplines. The relation among 
these disciplines is full cooperation, which means these disciplines are very close coupled. In subspace 
optimization step of CSSO, the leader subspace firstly runs optimization. Then the followers run optimization 
concurrently. In form (b), there is no leader subspace. All the disciplines are grouped into several subspaces. The 
relation among subspaces is approximation cooperation, and the relation among disciplines within a subspace is 
full cooperation. This form is the same with the subspace organization of traditional CSSO. These two types can be 
applied to different optimization problem according to specific situation. 

With above two composite protocol organization forms, the discipline organization in subspace optimization 
can be more rational and as a result the optimization efficiency can be enhanced. This improved procedure we 
propose is named Game theory Based Composite SubSpace Optimization (GBCSSO) procedure. 
 
3.3 GBCSSUO Procedure 
Based on the deterministic MDO procedure GBCSSO proposed above, further integrating uncertainty design and 
optimization method, we put forward a UMDO procedure called Game theory Based Composite SubSpace 
Uncertainty Optimization (GBCSSUO). The flowchart of GBCSSUO is shown in Figure 3. 

  
Figure 3: Flow chart of GBCSSUO 

 
The detail of each block in the diagram is described in the following. 
Step 1: Partition the complex system into several subspaces. Analyze each subspace’s distinction and coupled 

relationship with each other. If there is one subspace which dominates the others, this one is selected as the leader, 
and form (a) is chosen to organize the subspace optimization. If there is no subspace which is worthy of the leader 
position, then the form (b) is chosen. Sensitivity analysis method can be used to determine the influence of design 
variables of each subspace on the system design, so as to provide reference for selection of organization form. The 
sensitivity analysis is also applied to study the importance of uncertainty parameters. The significant ones are 
screened out so as to decrease the uncertainty optimization burden. 

Step 2: Construct approximation models with DOE techniques. The approximation models include three 
classes. The first class is the model used as replacement of high fidelity system models, so as to reduce calculation 
complexity during optimization and uncertainty analysis. The second class is the model used as decoupling 
method in subspaces with approximation cooperation relationship. The third class is the RSS used in 
leader-follower relationship. 

Step 3: Set the baseline for optimization. The selection of baseline is very important to optimization efficiency, 
especially for UMDO. In some cases, we can firstly run deterministic MDO procedure to get a primary better 
design, and then run the UMDO procedure to get the optimum under uncertainties. 

Step 4: System optimization. The math model is 
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UOf  is the optimization objective, which is the weighted sum of several sub-objectives including minimizing the 
expected mean value of the objective function and the standard deviation of system state variables robustY  which 
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have robust design requirement. p  is the system parameter vector. ΔX  is design variation range. gR  and hR  are 
reliability requirements for inequality and equality constraints respectively. ε  is a small quantity which limits the 
deviation range of the equality constraint. “~” means the value is calculated by approximation model. 

Step 5: Subsystem optimization. In organization form (a), the leader subspace optimization model is 
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iX  is the design vector of the i th subspace whose value is fixed according to system design. iY  is the state vector 
of the i th subspace whose value is calculated though RSS of this subspace. n  represents the number of the 
follower subspaces. 

The optimization model of the i th follower subspace is 
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During optimization process, the value of leaderX  and leaderY  is fixed. The state vector jY  of the j th subspace 
is calculated by means of the approximation models. The subscript robust i−Y  means the system state variables 
within the i th subspace which have robust design requirement. 

In organization form (b), the subspace optimization model is the same as the CSSO. 
All through the system and subsystem optimization, there is uncertainty analysis to get the robustness and 

reliability information of the design. There are several uncertainty analysis methods, including Monte Carlo 
analysis, Taylor series approximation, First Order Reliability Method (FORM), Second Order Reliability Method 
(SORM), Mean Value First Order Method (MVFO) etc.  

Step 6: System analysis and uncertainty analysis. This step is to coordinate the design of subspaces, and 
analysis the design with high fidelity discipline models which are too expensive to run in the optimization step. 
The function of uncertainty analysis is the same with that in optimization. But in this step, the accuracy of the 
analysis result is paid more attention, so simulation method is usually adopted which has advantage in accuracy but 
too time-consuming to use in optimization. 
 
4. Test and Application 
In this section, test and application of the proposed method GBCSSUO are discussed. Firstly, a reducer design 
problem is used to test GBCSSUO. Secondly, GBCSSUO is applied in an airplane system design problem, so as to 
explore the application of UMDO in aeronautical engineering. 
 
4.1 Example 1: Speed Reducer Design 
Before we apply the proposed UMDO method to airplane design, we firstly use a mathematical problem to validate 
this method. The problem is a speed reducer design which is one of the standard test problems proposed by NASA 
MDO Branch to evaluate MDO procedure [14]. The math model is 
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The description of each variable is illustrated in Table 1. We suppose the manufacturing mismatching 
tolerance is normal distributed and the standard tolerance degree is seven, so the variance of the uncertainty design 
variable is calculated according to its size range. The uncertainty analysis result is also listed in Table 1. 
 

Table 1: Uncertainty design variables of example 1 
Variable Name Symbol Distribution Variance 

gear face width /cm x1 Normal 21um 
teeth module /cm x2 Normal 1um 

number of teeth of pinion x3 / / 
Distance between bearings 1/cm x4 Normal 30um 
Distance between bearings 2/cm x5 Normal 30um 

diameter of shaft 1/cm x6 Normal 21um 
diameter of shaft 2/cm x7 Normal 30um 

 
Based on the research results of subspace partition in this design problem by Yong Zhao [6], we define the 

subspaces partition as follows. 
Subspace 1（SSO1）: { }1 1 2 3, ,X x x x=  

Subspace 2（SSO2）: { }2 4 6,X x x=  

Subspace 3（SSO3）: { }3 5 7,X x x=  
Sensitivity analysis of the variables is performed, and the result is shown in Figure 4. It’s obvious from the 

chart that 1x  and 3x  have significant importance on the objective. In other words, the variables of subspace one 
have outstanding effect on the objective, so we use the form (a) to organize subspaces. Subspace one is chosen as 
the leader and the other two subspaces are followers. The subspace relationship diagram is shown in Figure 5. 

The optimization problem is firstly solved with GBCSSO and CSSO respectively without consideration for 
uncertainties. On one hand we can test the utility of game theory compared to the traditional CSSO. On the other 
hand, we can provide a relative better baseline for further uncertainty optimization so as to reduce computing 
burden. The results are listed in Table 2, and the optimization iteration convergence history is plotted in Figure 6. 
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Table 2: Comparison of optimization results of GBCSSO and CSSO in example 1 
 GBCSSO CSSO 

Start point 3.6， 0.7，28，8.3，8.3，3.9，5.5 

Optimum 3.5，0.7，17，7.3，7.715325，
3.350218，5.2866545 

3.51，0.7，17，7.3，7.715324，
3.350215，5.286655 

Objective 2994.35660 2994.35587 
Iteration Number 3 7 

Time /s 85 250 
 

 
(a) GBCSSO optimization iteration history (b) CSSO optimization iteration history 

Figure 6: Comparison of optimization convergence history of GBCSSO and CSSO in example 1 
 

From Table 2 we can see that optimization results of the two procedures are almost the same. But in 
perspective of convergence iteration number and optimization time, GBCSSO has obvious advantage over CSSO. 
This proves validity of GBCSSO.  

We further consider uncertainties of design variables and set reliability requirement of each constraint to be 
95%. The optimization objective is minimizing the expected value of the objective function. GBCSSUO is adopted 
to solve the UMDO problem. The optimization result is compared with that of GBCSSO and listed in Table 3. 
 

Table 3: Comparison of optimization results of GBCSSUO and GBCSSO in example 1 
 GBCSSUO GBCSSO 

Start Point 3.6， 0.7，28，8.3，8.3，3.9，5.5 

Optimum 
3.534808628, 0.7，17，7.3，

7.8951811, 3.3837628, 
5.3396063 

3.5，0.7，17，7.3，
7.7153199，3.3502147，

5.2866545 
Objective 3054.6174 2994.3566 

Pr（g1≤ 0） 1 1 
Pr（g2≤ 0） 1 1 
Pr（g3≤ 0） 1 1 
Pr（g4≤ 0） 1 1 
Pr（g5≤ 0） 1 0.498 
Pr（g6≤ 0） 1 0.5 
Pr（g7≤ 0） 1 1 
Pr（g8≤ 0） 1 0.494 
Pr（g9≤ 0） 1 1 
Pr（g10≤ 0） 1 1 

Constraints 

Pr（g11≤ 0） 1 0.492 
Time /s 2580 85 

 
From Table 3 it can be seen that optimization result of GBCSSUO is not as good as GBCSSO. But reliabilities 

of all constraints get to one satisfying the 95% requirement, while four constraint reliabilities are lower than 0.5 in 
GBCSSO failing to meet the reliability requirement. In the table the reliability is equal to one means that the 
constraint can be satisfied with the probability of one. GBCSSUO sacrifices expectation of optimization objective 
to guarantee reliability satisfaction of every constraint, while deterministic MDO method optimized the design 
with the danger of violating constraints under uncertainties. Meanwhile, the time cost of GBCSSUO is obviously 
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much longer than GBCSSO, which demonstrates the calculation complexity of UMDO. This example clearly 
validates the feasibility of GBCSSUO in efficiently achieving optimum design and meanwhile improving design’s 
reliability. 
 
4.2 Example 2: Design of a Passenger Airplane 
To apply the proposed UMDO procedure GBCSSUO in aeronautic engineering, the conceptual system design 
problem of a passenger airplane is studied. There are three disciplines considered, including propulsion, 
aerodynamics and weight. For simplification of conceptual system design, the engineering estimation analytical 
models are utilized [15]. The coupled disciplinary relationship is described in Figure 7. 

cπ *T BPR

η

/W S

AR c0χ

TengW SFC eA

AKK W/L D

/W S

engW

SFC

eA

AKK

T

/T W

W

 
Figure 7: Coupled disciplinary relationship of passenger airplane system design model 

 
According to the data flow, it is obvious that the weight discipline has no design variables. It only calculates 

airplane take-off weight and wing load based on the output from the other two disciplines. So we can consider it as 
a pure analysis module. Wing load of this discipline is the input of aerodynamics, so these two are coupled. The 
propulsion has one variable output nozzle exit area which is the input of aerodynamics, and has no input which is 
also the output of the other two disciplines. So it is unilaterally independent of the other two. Naturally we divide 
them into two subspaces. One includes propulsion, and the other one includes aerodynamics and weight. It is also 
quite obvious that the relationship between these two subspaces is sequential. So in GBCSSUO the two subspaces 
are organized in leader/follower type, rather than the concurrent type organized by the CSSO.  

The optimization objective is to minimize the expectation of airplane take-off weight under uncertainties. The 
design constraints are to limit the wing load and thrust-weight ratio within required range with required reliability. 
The design variables include airfoil aspect ratio, leading edge sweeping angle, airfoil relative thickness, airfoil 
taper ratio, bypass ratio, engine compression ratio, and engine turbine temperature. The uncertainty characteristics 
of these variables are analyzed in Table 4. System parameters are considered as constants. 

For discussion convenience, all the data are normalized. For each design variable and constraint, the upper and 
lower limits are normalized as one and zero respectively. For objective function, its value in optimization start 
point is chosen as the baseline and normalized as one. Other value is compared with this baseline and the ratio 
between them is taken as the normalization result. 
 

Table 4: Uncertainty design variables of example 2 

Name Design 
range Distribution Coefficient. of 

Variance 
airfoil aspect ratio AR  [0,1] Normal 0.006 

leading edge sweeping angle 0χ  [0,1] Normal 0.0002 
airfoil relative thickness c  [0,1] Normal 0.01 

airfoil taper ratioη  [0,1] Normal 0.006 
bypass ratio BPR  [0,1] Normal 0.01 

engine compression ratio cπ  [0,1] Normal 0.01 
engine turbine temperature 3T  [0,1] Normal 0.01 

 
The uncertainty optimization mathematical model is 
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To reduce calculation burden of UMDO, deterministic MDO procedure is firstly run to achieve a preliminary 
better design solution as the start for UMDO. The optimization problem is solved with GBCSSO and CSSO 
respectively so as to compare the efficiency of game theory in subspace organization. The optimization results are 
listed in Table 5, and the optimization iteration convergence history is plotted in Figure 8. From Table 5, it is clear 
that both MDO procedures have achieved good optimization results. GBCSSO is slightly inferior to CSSO in 
objective minimization efficiency and the margin is 0.6%. But both the convergence cycle number and 
optimization time of GBCSSO are much less than those of CSSO. In other words, GBCSSO achieves almost the 
same optimization result with much less calculation cost. So in a synthetically view, GBCSSO is more efficient 
than CSSO. Based on the result of GBCSSO as the baseline, we continue to run GBCSSUO. The result is also 
listed in Table 5. From the results comparison of GBCSSUO and GBCSSO, it’s clearly that the reliability of the 
design scheme to meet constraint is greatly improved by considering uncertainties in the optimization. 

 
Figure 8: Comparison of optimization convergence history of GBCSSO and CSSO in example 2 

 
Table 5: Comparison of optimization results of CSSO, GBCSSO and GBCSSUO in example 2 
 Name Start Point CSSO GBCSSO GBCSSUO 

AR  0.33 0.21 0.22 0.22 
c  0.33 0.1 0.28 0.31 
η  0.667 0.0 0.43 0.45 

0χ  1.0 1.0 0.98 0.98 
BPR 0.167 0.024 0.305 0.328 

cπ  0.50 0.155 0.326 0.326 

Design 
Variables 

*T  0.33 0.92 0.67 0.78 
/T W  0.38 0.0 0.02 Pr=0.65 0.06 Pr=1 Constraints 
/W S  0.80 0.13 0.15 Pr=1 0.17 Pr=1 

Objective W /kg 1 0.945 0.951 0.956 
Convergence cycle number / 16 6 8 Others 

Optimization time (s) / 4531 8390 79632 
 
5. Conclusions 
As various kinds of uncertainties exist in the world objectively, it is very important to take uncertainty into 
consideration from the beginning of system design and optimize the system performance, meanwhile to improve 
robustness and reliability. To improve UMDO efficiency, UMDO procedure is studied in this paper. 

GBCSSO procedure is based on the deterministic MDO procedure CSSO, and adopts game theory to organize 
the relationships of subspaces in subsystem level optimization. Considering the industry reality, only cooperation 
protocol and sequential protocol are synthetically utilized. Based on the protocol characteristics, the applicability 
of each protocol is analyzed, and two types of multi-protocol integration forms are proposed. One is consisted of 
one leader and several follower subspaces, and the other one is consisted of several equal subspaces. In the first 
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form, the subspace with most significant importance on design is optimized firstly, which primarily determines the 
scheme and design direction, and then the followers continue to execute optimization based on the results passed 
down from the leader. This form can make full use of the sequential design advantage in keeping consistency in the 
design decision of the key variables, which can effectively reduce the calculation cost caused by disciplinary 
cooperation in independently concurrent design. In the second form, each subspace has nearly equal importance in 
design, so they can be treated equally and run optimization concurrently, which can make full use of parallel 
computation and save design optimization time. Each form can be applied in different situation according to 
specific characteristics of the UMDO problem. To sum up, this procedure can flexibly meet different design 
requirements and make full use of the intrinsic connection features between subspaces, so as to improve 
optimization efficiency. 

GBCSSUO is proposed based on the efficient procedure GBCSSO and integration of the uncertainty theory 
and analysis methods. GBCSSUO can efficiently organize the process of complex system uncertainty design and 
optimization, and mitigate the calculation difficulties, so as to improve the optimization efficiency of UMDO. An 
example of speed reducer design is taken to test GBCSSUO, and the results validate its feasibility and efficiency. 
The GBCSSUO is further applied in a system design problem of a passenger airplane, and the results provide a 
reliable design scheme, which has some reference value for application of UMDO in airplane design. 

In this paper, the UMDO of airplane is only primarily explored, and the effectiveness and feasibleness is 
confirmed. In the future, to improve the application of UMDO in airplane system design, the uncertainty modeling 
of airplane system, design models and manufacture should be studied in detail based on the industry and 
experiment data, and high fidelity accurate disciplinary models should be adopted in the optimization procedure 
rather than the simple engineering analytical models used in this paper. As computing complexity is ever 
increasing, the approximation methods applicable to high dimension and high nonlinear models should be utilized. 
GBCSSUO can also be applied in airplane subsystem or components design optimization problem, so as to 
enhance airplane performance from bottom to top. 
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