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1. Abstract  

For obtaining correct reliability-based optimum design, an input model needs to be accurately estimated in identification 

of marginal and joint distribution types and quantification of their parameters. However, in most industrial applications, 

only limited data on input variables is available due to expensive experimental testing cost.  The input model generated 

from the insufficient data will be inaccurate, which will lead to incorrect optimum design. In this paper, reliability-based 

design optimization (RBDO) with the confidence level is proposed to offset the inaccurate estimation of the input model 

due to limited data by using the upper bound of confidence interval of the standard deviation. Using the upper bound of 

confidence interval of the standard deviation, a confidence level on the input model can be assessed to obtain the 

confidence level of the output performance, i.e. a desired probability of failure, through the simulation-based design. For 

RBDO, the estimated input model with the associated confidence level is integrated with the most probable point 

(MPP)-based dimension reduction method (DRM), which improves accuracy over the first order reliability method 

(FORM). A mathematical example and a fatigue problem are used to illustrate how the input model with the confidence 

level yields a reliable optimum design by comparing it with the input model obtained using the estimated parameters. 

 

2. Keywords: reliability-based design optimization, input model uncertainty (identification and quantification of 

marginal and joint CDFs), confidence level, MPP-based dimension reduction method. 

 

3. Introduction 

In RBDO, input model uncertainties consisting of input statistical uncertainty and input physical uncertainty exist due to 

limited available data and lack of information on input variables as shown in Fig. 1. Since in many engineering 

applications, input random variables such as fatigue material properties are correlated [1-4], the input statistical 

uncertainty needs to be modeled by identifying the joint cumulative distribution functions (CDFs) as well as marginal 

CDFs. The input physical uncertainty is modeled by quantifying the parameters of the identified marginal CDFs and joint 

CDFs such as mean, standard deviation, and correlation coefficient. However, in most industrial applications, only limited 

data on input variables is available due to expensive experimental testing cost, and the use of input model estimated from 

the insufficient data will yield incorrect reliability-based optimum design.  

Research on the identification of marginal CDFs and a joint CDF for RBDO has been recently carried out [5,6], but 

the optimum design is obtained from the input model generated using given limited data without considering the input 

model uncertainty. In this paper, to offset the inexact identification and quantification of the input model, the confidence 

level on the input model is implemented for RBDO. In this method, instead of using the standard deviation of marginal 

CDFs estimated from given limited data, the upper bound of the confidence interval of the estimated standard deviation is 

used for the input model because a larger standard deviation provides a larger joint PDF contour for target reliability index 

t , which yields more reliable optimum design. Using the upper bound of the confidence interval on the standard 

deviation, a reliable optimum design with a specified confidence level could be obtained. 

To check whether using the upper bound of the confidence interval of the estimated standard deviation provides the 

confidence level of the output performance, i.e., the desired target probability of failure, the joint PDF contour for t  is 
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used to measure a confidence level of the input model. If the contour for 
t  covers the true contour for the target 

reliability index 
t , then it will yield a reliable optimum design regardless of the location of the most probable point 

(MPP) on the contour. A mathematical example is tested to check whether the confidence level of the input model yields 

a desired confidence level of the output performance through a simulation study. 

When the input variables are correlated with joint non-Gaussian distribution, the nonlinear transformation will 

convert the constraint functions to highly nonlinear functions in the standard Gaussian space where the MPP search is 

carried out. Thus, the FORM, which approximates constraint functions linearly, will not provide accurate results when the 

input variables are correlated with joint non-Gaussian distribution. Thus, RBDO using MPP-based DRM [7,8], which is 

more accurate than the FORM, is used in this paper. Using the input model obtained with the target confidence level and 

accurate inverse reliability analysis method (MPP-based DRM), RBDO results with the associate confidence level can be 

obtained as shown in Fig. 1. A mathematical example and a fatigue problem with correlated input variables show how the 

input model with the target confidence level yields reliable optimum designs, while the input model without the target 

confidence level yields unreliable optimum designs. 

 

 
Figure 1. RBDO under Uncertainties 

 

4. Estimation of Input Model 

As shown in Fig 1, before carrying out the RBDO, the input model uncertainties such as marginal CDFs and joint CDF 

need to be identified and their parameters need to be quantified based on the experimental data. Section 4 presents how to 

estimate the input model with correlated input variables such as fatigue material properties. A copula is introduced to 

model the joint CDF of the correlated variables, and identification and quantification of the input model are explained. 

 

4.1 Correlated Material Properties 

In many structural RBDO problems, the input random variables such as the material properties and fatigue properties are 

correlated [1-4]. In fatigue problems, the strain-life relationship is expressed as 
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where 
'

f  is the strain amplitude, E  is the Young’s modulus, fN  is the fatigue life, 
'

f  and b are the fatigue strength 

coefficient and exponent, and 
'

f  and c are fatigue ductility coefficient and exponent, respectively.  

Figure 2 shows 29 experimental data sets of the fatigue strength coefficient 
'

f  versus fatigue strength exponent b; 

and fatigue ductility coefficient 
'

f  versus fatigue ductility exponent c of the SAE 950X high strength low alloy [1]. As 

shown in Fig. 2 (a) and (b), these variables are highly negatively correlated where the correlation coefficients between 
'

f  

and b and between 
'

f  and c are calculated as 0.828 and 0.906, respectively. It is known that 
'

f  and 
'

f  follow the 

lognormal distribution and b and c follow the Gaussian distribution [1]. Since these fatigue material properties are 

correlated, joint CDFs of the correlated variables need to be determined. However, commonly used multivariate 

distributions such as joint Gaussian distribution cannot be used because the marginal distribution types of two correlated 

variables are different, i.e., 
'

f
 
has a lognormal distribution and b has a Gaussian distribution. For this case, a copula, 

which will be explained in Section 4.2, needs to be used.  

For probabilistic life prediction, when variables are so closely related, another option is to let one variable be a 

function of the other variables, such as a linear fit. The problem with this approach is that the data in Fig. 2 cannot be 

properly fitted by linear functions. In addition, it is pointed out by Annis [2] that the result will be over corrected and thus 

underestimates the overall variability. According to Annis [2], the right way is “… to correctly modeling the joint 



 
 

behavior to reduce greater than 700% error in the estimated of the standard deviation to about 1%” in his example. 

  
           (a) 

'

f  and b               (b) 
'

f  and c 

Figure 2. Paired Data Obtained From SAE 950X [1] 

 
4.2 Copula to Represent Joint CDFs of Correlated Input Variables 

Copulas are multivariate distribution functions whose one-dimensional margins are uniform on the interval [0, 1]. If the 

random variables have marginal distributions, then by Sklar’s theorem [9], there exists an n-dimensional copula C such 

that 

       
1 1,..., 1 1,..., ,...,

n nX X n X X nF x x C F x F x θ  (2) 

where θ  is the matrix of correlation parameters between 1,..., nX X . If marginal distributions are all continuous, then C is 

unique. Conversely, if C is an n-dimensional copula and    
1 1 ,...,

nX X nF x F x  are marginal CDFs, then the joint 

distribution is an n-dimensional function of marginal CDFs [9]. Some copula functions that are used in this paper and the 

domain of its parameter are shown in Table 1. The copula functions of other copulas are presented by Noh et al. [5,6]. 

 

Table 1. Copula Functions and Kendall’s Tau 
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Since the joint CDF is expressed as a function of marginal CDFs, it is easy to model the joint CDF using marginal 

CDFs and correlation parameters that can be obtained from the experimental data. Moreover, since the copula decouples 

marginal CDFs and the joint CDF, the joint CDF modeled by the copula can be expressed in terms of any types of 

marginal CDFs. Even though the same copula is used, various types of joint distributions can be generated according to 

the marginal distribution types. To model the joint CDF using the copula, the matrix of correlation parameters θ  needs to 

be obtained from the experimental data. Since various types of copulas have their own correlation parameters, it is 

desirable to have a common correlation measure to obtain the correlation parameters from the experimental data.  

Kendall’s tau [10,11] is defined as the probability of concordance minus the probability of discordance between two 

random vectors  1 1,X Y  and  2 2,X Y  with the same margins  u F x  and  v G y , but with a common copula,  

      , ,H x y C F x G y   of  1 1,X Y  and  2 2,X Y . The population version of Kendall’s tau is expressed as 

    2
4 , , 1

I
C u v dC u v      (3) 

For some copulas, Eq. (3) can be simplified as shown in Table 1. The sample version of Kendall’s tau is 
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where c is the number of concordant pairs, d is the number of discordant pairs, and ns is the number of samples. Once the 

Kendall’s tau is obtained from samples using Eq. (4), the correlation parameter   can be obtained using Eq. (3) or explicit 

formulations given in Table 1. 

 

4.3 Identification and Quantification of Input Model 

The two most representative methods that determine a marginal CDF and copula for the given data are the goodness-of-fit 

test (GOF) [12-14] and the Bayesian method [5,6,15]. The GOF test has been developed and widely used to select a 

marginal CDF, but it relies on the parameters estimated from samples. Thus, if the parameters are incorrectly estimated, 

then a wrong marginal CDF might be selected. On the other hand, since the Bayesian method calculates weights to 

identify marginal CDFs by integrating the likelihood function over the domain of the parameter, it is less dependent of the 

choice of the parameter. Thus, the Bayesian method is preferred over the GOF test [5,6,15]. The numerical comparison of 

the GOF test and Bayesian method is presented by Noh et al. [5,6].  

 

4.3.1 Identification of Input Model Using Bayesian Method 

Consider a finite set  qs s  consisting of candidate, marginal CDFs and copulas kM , 1, ,k q  ,
 
where s  is a set of all 

candidates and q is the number of the candidates.  

The Bayesian method consists of defining q hypotheses: 

kh : The data come from candidates
 kM , 1, ,k q  . 

The probability of each hypothesis kh  given the data D  is defined as [5,6,15] 

  
   

 

Pr , Pr
Pr ,

Pr

k k

k

D h I h I
h D I

D I
  (5) 

where  Pr ,kD h I  is the likelihood function,  Pr kh I  is the prior on the candidate, and  Pr D I  is the normalization 

constant with any relevant additional knowledge I .  
Consider the likelihood function of the candidates. Under the hypothesis kh  that the data D  come from the marginal 

CDF kM , the probability of drawing the data D  for the hypothesis on kM is expressed as a likelihood function as  

       
1

Pr , , , , , ,
ns

k k i

i

D h I f x a b     
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where ix is the i
th

 sample value. Since each marginal PDF kf  has its own parameters a and b, a common parameter, mean 

or standard deviation, needs to be used as a nuisance variable to calculate Eq. (5) for candidate marginal CDFs. The 

parameters a and b of some marginal distributions, which are expressed in terms of mean and standard deviation, are 

presented by Noh et al [5]. In this paper, the mean is used as the parameter   for integrating Eq. (6). Accordingly, Eq. (5) 

results in 
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where the mean is the variable for the integration and standard deviation is calculated from samples.  

Under the hypothesis kh  that the data D  come from the copula kM , the probability of drawing the data D  for the 

hypothesis on kM is expressed as a likelihood function as 

     1
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where  ,i iu v  are ns  mutually independent pairs of the data and are calculated as   i X iu F x  and  i Y iv F y where 

 X iF x  and  Y iF y  are the marginal CDF values evaluated at the given paired data  ,i ix y .  1

kg 
 is the correlation 

parameter   in the copula function, which is expressed as an inverse function of    for 1, ,kg k q     as shown in 

Table 1.  

Using the Kendall’s tau as a parameter   for integrating the likelihood function, Eq. (8), Eq. (5) can be rewritten as 

[5,6,15] 
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In Eqs. (7) and (9),  Pr D I  can be expressed as 

      
1

Pr Pr , Pr
q

k k

k

D I D h I h I

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Since  Pr D I  is constant, it is not included for convenience in this paper.  

To calculate the priors on the candidate,  Pr ,kh I  and  Pr I , let the additional information I  be as follows: 

1I : A parameter   belongs to the set   , and the estimated parameter from samples is equally likely; 

2I : for a given parameter, all candidates satisfying k

   are equally probable, where k

  are domains of    for kM .  

The set   provides information on the interval of the parameter that the user might know. For example, if the user 

knows the specific domain of 
 , the domain can be used to integrate the likelihood function for calculation of weights 

of each candidate. However, if any information on the interval of the parameter is not given, it might be assumed as 

 ,     for mean, and
 

 1,1  
 
for Kendall’s tau. For the mean, the infinite domain practically cannot be used 

to integrate the likelihood function, and thus the finite range of 
  needs to be determined from samples such that 



covers the wide range of the parameter. Using the first additional information 1I , the prior on the parameter can be 

defined as  
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where     is the Lebesgue measure, which is the width of the interval 
 . Likewise, since all candidates are equally 

probable for k

  , the prior on the candidate is defined as 

  2
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In this paper, it is assumed that the prior follows a uniform distribution, which means there is no information on the 

distribution of the parameter,  . If it is known that the prior distribution of   follows a certain distribution such as the 

Gaussian,  1Pr I  might be expressed as a PDF and can be used as a prior distribution instead of Eq. (11). However, 

since the prior distribution of   is usually unknown and the effect of the prior is negligible when the number of samples is 

enough (larger than 100 samples), Eq. (11) can be used in most cases.   

By substituting Eqs. (11) and (12) into Eq. (7), Eq. (7) can be expressed as the computation of the weight for the 

marginal CDF:  
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Likewise, by substituting Eqs. (11) and (12) into Eq. (9), Eq. (9) is expressed as the calculation of the weight for the 

copulas:  
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The normalized weight of each candidate is calculated as 
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The candidate with the highest normalized weight is identified as the one that best describes given data among candidates. 

 

4.3.2 Quantification of Input Model 

Once marginal and joint CDF types are identified using the Bayesian method, it is necessary to evaluate their parameters 

based on given data. To calculate the parameters of the marginal CDFs, the maximum likelihood estimate (MLE) can be 

used. However, the MLE might be biased [16], which means that the expected value of the parameter might not be the 

same as the parameter being estimated. For instance, the MLE is biased for estimating the variance 2 of a Gaussian 

distribution. On the other hand, a minimum variance unbiased estimator (MVUE), which is a commonly used estimator, is 

unbiased for estimating the variance 2 , and the variance of 2 , 
2Var    , is smaller than any other unbiased estimators. 



 
 

This estimator is derived by Likes [17]. The mean and variance that are estimated from given samples are called the 

sample mean x  and variance 2s , respectively. 

The sample mean is calculated as 

 
1
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i

i

x
x

ns

  (16) 

which is the same for MLE and MVUE. The sample variance for MLE is calculated as 
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and the sample variance for MVUE is calculated as 
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respectively. Using the estimated mean and variance from the estimators, parameters a and b of the identified distribution 

can be estimated using explicit functions, which are expressed as mean and standard deviation presented by Noh et al. [5].    

Second, to calculate the correlation parameter   for the identified copula, Eq. (4) is first used to calculate the Kendall’s 

tau from samples. Then, the correlation parameter   is calculated using Eq. (3) or explicit formulations of   expressed as 

Kendall’s tau. Using the estimated parameters, the input model for carrying out the RBDO, is now obtained. 

 

5. Assessment of Confidence Level of Input Model 
Although the input model is identified and quantified as explained in Section 4, the input model uncertainties still exist 

due to the limited data. In this section, the confidence level on the input model is introduced to alleviate the inexact 

identification and quantification of the input model, and to obtain the confidence level of the output performance. 

 

5.1. Confidence Level on Joint PDF Contour for Reliability Index 

Even if the confidence level of the input model is obtained, the confidence level of the output performance might not be 

the same as the confidence level of the input model. The exact confidence level of the output performance is difficult to 

obtain because, for the given target reliability contour of the input model, the confidence level on the output performance 

can be different for different RBDO problems. Thus, a common measure for the calculation of the confidence level of the 

input model that can provide the confidence level of the output performance needs to be defined.  

In this study, the joint PDF contour for the target reliability index t  is used as the measure. If the joint PDF contour 

for t  obtained from the estimated input model covers a true contour, then it will yield a reliable optimum design. 

Otherwise, it might yield either a reliable or unreliable optimum design depending on the active constraints and their MPP 

points. Figure 3 shows the former case in which the estimated joint PDF contour for , indicated as a dotted contour, is 

larger than the true contour, indicated as a solid contour.  

 

 
        (a) Contours for t    (b) Case 1            (c) Case 2 

Figure 3. Large Estimated Joint PDF Contour and True Contour for t with Different Constraints 

 

 
         (a) Contours for t    (b) Case 1           (c) Case 2 

Figure 4. Estimated Joint PDF Contour and True Contour for t with Different Constraints 

 

In Figs. 3 and 4, the gray region is where the constraint is failure, i.e.,   0G x . In Fig. 3, the circular dot at the 

t



 
 

center of the solid contour is the optimum design obtained from the true contour, and the triangular mark is the optimum 

design obtained from the estimated contour. Since the estimated optimum is farther away from the active constraint 

function than the true optimum, the estimated contour yields a reliable optimum designs as shown in Fig. 3 (b) and (c). 

However, if the estimated contour does not fully cover the true contour as shown in Fig. 4 (a), then it could yield a reliable 

optimum design as shown in Fig. 4 (b), or not as shown in Fig. 4 (c). Thus, even though it is a conservative measure, the 

confidence level of the output performance needs to be assured by using the probability that the estimated contour fully 

covers the true contour. 

To obtain the contour that fully covers the true contour, it is necessary to know which parameter controls the size of 

the contour. First, the upper and lower bounds of the confidence interval of the mean are related to the position of the 

contour as shown in Fig. 5 (a) where the upper and lower bounds of the mean are indicated as dashed and dashed-dotted 

contours, respectively. Further, the mean is usually accurately estimated even for small number of samples and thus, it is 

not considered. 

Second, the contour with the upper bound of the confidence interval of the correlation coefficient, indicated as a 

dashed contour in Fig. 5 (b), is the similar case with the dashed contour in Fig. 4. Even though the contour with the lower 

bound of the confidence interval of the correlation coefficient is used as shown in the dashed-dotted contour in Fig. 5 (b), 

it still does not cover the true contour. Therefore, the confidence interval on the correlation coefficient is not used to assess 

the confidence level of the input model.  

Finally, the upper bound of the confidence interval of the standard deviation always yields a large contour, indicated 

as a dashed contour in Fig. 5 (c), which leads to a reliable design. Thus, the upper bound of standard deviation is used to 

estimate the confidence level on the input model. 

 

   
(a) Mean                  (b) Correlation coefficient             (c) Standard deviation 

Figure 5. Joint PDF Contours for t Using Lower and Estimated, and Upper bound of Each Parameter 

 

5.2. Confidence Interval of Standard Deviation 

Suppose that X  is a Gaussian random variable and ns samples, 1 2, , , nsx x x , are collected to estimate the population 

variance 2 , which is unknown constant. To estimate the population variance 2 , it is assumed that the samples come 

from ns independent Gaussian random variables, i.e. 1X , 2X , ···, nsX . That is, each sample is considered as a random 

variable. The sample variance can be calculated as [18] 
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i
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
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where X  is the sample mean, which is a Gaussian variable. 

Let   be a population mean, which is unknown constant. To calculate the confidence interval of the standard 

deviation, the distribution of the variance 2S  needs to be determined when X  is a Gaussian random variable. Equation 

(19) is rewritten as 
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Dividing both sides of Eq. (20) by 2 , Eq. (20) is written as 
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Since   and 2  are constant, and the first term on the right side of Eq. (21) is a sum of the ns squared independent 

Gaussian variables, and thus has a chi-square distribution with ns degrees of freedom [19], denoted as 
2

ns . 

The second term on the right side has only one squared Gaussian variable, and thus has a chi-square distribution with 

one degree of freedom. Since the sum of two chi-squared distributions with i and j degrees of freedom is also the 



 
 

chi-square distribution with (i+j) degrees of freedom [20], the left side of Eq. (21) has a chi-square distribution with 

(ns1) degree of freedom, denoted as 
2

1ns  . 

When the PDF of   2 21 /ns S   has a chi-square distribution with (ns1) degrees of freedom, the two-sided (1) 

confidence interval for the population variance 2  is given as 
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where / 2, 1nsc   and 1 / 2, 1nsc   are the critical values of the chi-square distribution evaluated at the probability levels of 

/2 and (1/2) with (ns1) degrees of freedom, respectively [18]. For 95% confidence level on the standard deviation, 

for example, set  = 0.05. Using the realization of 2S , denoted as 2s , Eq. (22) is rewritten as 
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Thus, for two-sided (1), the lower and upper bounds of the confidence interval for the standard deviation,  L  and U , 

respectively, are calculated as 
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5.3. Confidence Level of Input Model 
Once the upper bound of the confidence interval on the standard deviation is obtained for the target confidence level 

(1), the confidence level on the input model can be estimated. Figure 6 shows a flowchart for assessment of the 

confidence level on the input model. When a true input model is given  for example, the Frank copula with Gaussian 

marginal CDFs is the true joint CDF in this testing  different samples, ns=30, 100, and 300, can be generated from the 

true model for sufficient number of trials such as 300. Based on the generated samples, the marginal parameters and upper 

bound of the confidence intervals of the estimated standard deviation are quantified and the marginal distribution types of 

1X  and 2X  are identified using the Bayesian method.  

 

 
Figure 6. Flowchart of Assessment of Input Confidence Level 

 

Once the marginal CDF types are identified, then the correlation coefficient is calculated and a copula that best 

describes the given data is identified using the Bayesian method. Using the identified input model with the upper bound of 

the confidence interval of the estimated standard deviation, the joint PDF contour for t  can be drawn. By comparing the 

estimated contour with the target confidence level and the one with true model, the confidence level on the input model is 

assessed by calculating the probability that the obtained contour is larger than the true contour by carrying out 300 trials. 

Figure 7 shows a true contour and 50 contours with estimated input models for the target confidence level of 95%  

from a different number of samples ns=30, 100, and 300 generated from a true input model, which is the Frank copula 

with 1X  and 2X ~  25,0.3N . To observe the effect of the correlation coefficient on the assessment of the confidence 

level, different correlation coefficients, =0.2, 0.5, and 0.8, are tested. 



 
 

When the number of samples is small, ns=30, the obtained contour shapes are rather irregular and sometimes do not 

cover the true contour due to wrong estimation of the input model as shown in Fig. 7 (a), (d), and (g). As the number of 

samples is increased to ns=300, the obtained contours mostly cover the true contour as shown in Fig. 7 (c), (f), and (i). In 

addition, when the true correlation coefficient is small, =0.2, the obtained contour mostly covers the true contour even 

for the small number of samples as shown in Fig. 7 (a). On the other hand, when the true correlation coefficient is large, 

=0.8, the obtained contours cannot cover well the true contour especially when the correlation coefficient is estimated as 

higher than 0.8 as shown in Fig. 7 (g). However, for the large number of samples, since the correlation coefficient is 

accurately estimated and copulas are correctly identified in most cases, the obtained contours mostly cover the true 

contour as shown in Fig. 7 (i). Calculating the probability that the obtained contour is larger than the true contour over 300 

data sets, the confidence level of the input model is obtained for a different number of samples and different correlation 

coefficients as shown in Table 2, where the target confidence level on the standard deviation is given as 95%. 

 

 
Figure 7. Joint PDF Contours for 2t   Using Obtained Input Models 

 

Table 2. Obtained Confidence Level of Input Model (%) for Frank Copula  

 

ns =0.2 =0.5 =0.8 

30 88 77 52 

100 92 83 75 

300 95 94 93 

 

As stated earlier, when the number of samples is small, the obtained confidence level for =0.8 is much lower than 

=0.2 because the contour shape with a high correlation coefficient is more sensitive to the estimated correlation 

coefficient than the one with the low correlation coefficient. Still, as the number of samples increases, the confidence level 

converges to the target confidence level, 95%. The Frank copula has a similar shape with some copulas such as Gaussian, 

whereas Clayton copula has a distinct shape. Thus, when the true model is the Clayton copula with 1X  and 2X ~

 25,0.3N , the obtained confidence level for Clayton copula is higher than the one for Frank copula especially for ns=30 

and 100 as shown in Table 3. As the number of samples increases, the obtained confidence level converges to the target 

confidence level 95%.  

It is very important to note that the confidence level of the input model is a conservative measure from the RBDO 

point of view. That is, even if the obtained contour for the target reliability t  does not cover the true contour for t , it 

does not necessarily mean that the reliability of the optimum design does not meet the target reliability t . It depends on 

the where the MPP points will be at the reliability-based optimum design. That is, for example, even if we use the input 

models with confidence levels of 52% in Table 3 or 63% in Table 4, the confidence level of the reliability-based optimum 

design meeting the target reliability t  could be significantly higher than 52% or 63%, respectively. In Section 7, it is 

shown how the confidence level of the reliability-based optimum design meeting the target reliability  is obtained 

through a mathematical example. 

t



 
 

 

Table 3. Obtained Confidence Level of Input Model (%) for Clayton Copula 

 

ns =0.2 =0.5 =0.8 

30 84 80 63 

100 88 88 82 

300 95 94 94 

 

6. Reliability-Based Design Optimization Using MPP-Based DRM  

The FORM is commonly used for the inverse reliability analysis. However, when the constraint function is nonlinear or 

multi-dimensional, the inverse reliability analysis using the FORM could be erroneous because the FORM cannot handle 

the complexity of nonlinear functions or multi-dimensional functions. Accordingly, the correlation of input random 

variables, which increases the nonlinearity of constraint functions in the transformed standard Gaussian space, may cause 

significant error in the FORM-based inverse reliability analysis. In addition, it is shown in Ref. 8 that, to carry out the 

accurate reliability analysis and reduce the transformation ordering dependency of the inverse reliability analysis result, 

the MPP-based DRM [7] for the inverse reliability analysis is necessary. 

In general, an RBDO problem can be formulated to 
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where X  is the vector of random variables; d  is the vector of design variables, which is the mean value of the random 

variables X , ( )d X ; ( )iG X  represents the constraint functions; 
i

Tar

FP  is the given target probability of failure for the 

i
th

 constraint; and nc, ndv, and n are the number of probabilistic constraints, number of design variables, and number of 

random variables, respectively. 

Using a performance measure approach (PMA) [21], the i
th

 constraint can be rewritten, from Eq. (25), as 

   Tar *( ) 0 0 ( ) 0
ii F iP G P G    X x  (26) 

where 
*( )iG x  is the i

th
 constraint function evaluated at the MPP 

*
x  in X-space.  

To satisfy the feasibility of the constraint, the MPP needs to be estimated for each constraint by solving the following 

optimization problem: 
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where ( )ig u  is the i
th

  constraint function that is transformed from the original space (X-space) into the standard Gaussian 

space (U-space), i.e., ( ) ( ( )) ( )i i ig G G u x u x . 
it  is the i

th
 target reliability index, defined as  1

i i

Tar

t FP   where 

 1  is the inverse of the Gaussian CDF. To further improve stability and efficiency of the PMA for RBDO, an 

enhanced performance measure approach (PMA+) was developed by Youn et al. [22], and is used in this paper.  

The optimum point of Eq. (27) is denoted by the FORM-based MPP, u
* 

in U-space and correspondingly x
*

 in 

X-space. As shown in Eq. (26), if the constraint function at the MPP, gi(u
*
), is less than or equal to zero, then the i

th
 

constraint in Eq. (26) is satisfied for the given target reliability. If the MPP is updated through the calculated probability of 

failure using the MPP-based DRM, then the MPP is called a DRM-based MPP. The detailed algorithm of the MPP-based 

DRM is presented by Lee et al [7]. Thus, using Eqs. (25) and (26), the RBDO formulation using the MPP-based DRM can 

be rewritten as 
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where 
*

DRMx  is the MPP obtained from the DRM. 

 

7. Numerical Examples  

In this section, a mathematical example and a fatigue problem with correlated input variables are used to show how the 

input models with and without confidence level yield the confidence levels of RBDO results. 

 

7.1. Mathematical Example 



 
 

Consider a two-dimensional mathematical example where  1 ~ 1.608,0.060X LN  and  2

2 ~ 5.0,0.3X N  are correlated 

with the Frank copula ( 0.5  ) and the parameters of the lognormal distribution, a = 1.608 and b = 0.060, are obtained 

from 5.0   and 0.3   using  

  
2 2 2/ 2 2 2, and 1a b b a be e e      (29) 

An RBDO formulation is defined to 
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Carrying out the MPP-based DRM with the true input model, the optimum design is obtained as 
true =(2.005,1.397)d , 

which is shown in Fig. 8. The probabilities of failures for two active constraints are estimated as
1

2.243%FP   and 

2
2.044%FP   at the optimum design point using Monte Carlo simulation (MCS).   

 
Figure 8. Contour for t=2 Using True Input Model 

 

In Section 6, the confidence levels of the target contour  for the Frank copula with 0.5   and 0.8 are 77% and 52% 

using the upper bound of the 95% confidence interval of the standard deviation as shown in Table 2, which could lead to 

concern about the confidence level of the reliability-based optimum design meeting the target reliability . In this 

example, the confidence level of the output performance is estimated using the Frank copula with  and 0.8; and 

100 data sets of 30 samples generated from the true input model. Even though one mathematical example is not enough to 

test the confidence level of the output performance for RBDO problems, it might help us to understand that the output 

confidence level is larger than the confidence level of the input model. 

First step is to estimate the mean
E , standard deviation E , upper bound of the standard deviation

U , and 

Kendall’s tau E  using 30 samples over 100 data sets. Table 4 shows the minimum, mean, and maximum values of the 

estimated parameters over 100 data sets where the true Kendall’s tau is 0.5.  

As shown in Table 4, since the mean 
E  can be more accurately estimated than other parameters, the variation of the 

estimated mean is smaller than the variation of the standard deviation and correlation coefficient. Thus, the effect of 

incorrectly estimated standard deviation and correlation coefficient on the optimum design is more significant than the 

effect of incorrectly estimated mean. However, even though the correlation coefficient has high variation, it cannot be 

effectively used to obtain the desirable confidence level of the output performance because its lower and upper bounds do 

not assure reliable optimum designs. On the other hand, the upper bound of the standard deviation is normally 0.1 higher 

than the estimated standard deviation, as shown in Table 4, so that the upper bound of the confidence interval of the 

standard deviation will yield more reliable design than the estimated standard deviation. 

t

t

0.5 



 
 

Table 4. Estimated Parameters Obtained from 100 Data Sets ( 0.5  ) 

 

Parameters     

Min  
1X  4.892 0.227 0.305 

0.315 
2X  4.884 0.204 0.274 

Mean 
1X  5.015 0.304 0.408 

0.513 
2X  5.004 0.296 0.398 

Max 
1X  5.163 0.411 0.552 

0.683 
2X  5.127 0.415 0.557 

 

Second, the marginal and copula type needs to be identified from the data. Table 5 shows the number of 

identifications for marginal CDFs over 100 data sets. Since the Gaussian and Lognormal distribution shapes are very 

similar for 5.0  and 0.3  , those are mostly identified as correct marginal distributions for 1X and 2X . Likewise, 

the Gaussian copula has a shape similar to that of the Frank copula; thus, it has the second largest number of 

identifications as shown in Table 6.  

   

Table 5. Number of Identifications for Marginal CDFs (ns=30, 100 data sets) 

 

Variables Gaussian Weibull Gamma Lognormal Gumbel Extreme Extreme type-II 

1X  34 6 8 37 13 0 2 

2X  40 6 10 31 7 3 3 

 

Table 6. Number of Identifications for Copula ( 0.5  , ns=30, 100 data sets) 

 

Clayton  AMH  Gumbel  Frank  A12  A14  FGM  Gaussian  Independent   

10 0 7 60 2 7 0 14 0  

 

For each data set, an input model is obtained by identifying marginal CDF and copula types and quantifying 

parameters from the data set. Using the estimated standard deviation and its upper bound, two input models with and 

without the confidence level are implemented in RBDO where the target confidence level is given as 95%. Carrying out 

the MPP-based DRM for RBDO, the probabilities of failures for two active constraints are calculated using MCS with the 

true input model as shown in Table 7, where the target probability of failure 
Tar

FP  is 2.275%. Table 7 shows the minimum, 

maximum, and mean values of the probabilities of failures for two active constraints, 
1FP and

2FP , over 100 data sets. The 

confidence level of the output performance is calculated by counting the number of cases that 
1FP and

2FP are smaller than 

Tar

FP over 100 data sets.  

 

Table 7. Parameters of Probability of Failures Using Identified Marginal Distribution and Copula Types ( 0.5  , ns=30, 

100 data sets)   

 

 
Input model without confidence level Input model with confidence level 

1FP (%) 
2FP (%) 

1FP (%) 
2FP (%) 

Min 0.125 0.523 0.001 0.079 

Mean 2.265 3.244 0.484 1.572 

Max 11.27 7.645 4.353 4.784 

Estimated 

Confidence level 
52% 28% 98% 81% 

 

As seen in the minimum, mean, and maximum values of the probabilities of failures in Table 7, the input model with 

the confidence level indeed yields more reliable design than the one without confidence level. In this example, the first 

constraint is more mildly nonlinear than the second constraint, as shown in Fig. 8, so that the first constraint is less 

E E U E



 
 

dependent on the incorrect quantification and identification of the marginal and joint CDF than the second constraint. 

Thus, the confidence level for 
1FP  is higher than the one for 

2FP for both input models. Depending on the constraint 

shapes near the MPPs, the confidence levels of the output performance are obtained as 98% and 81%, respectively, which 

are higher than the confidence level of the input model, 77% in Table 2. Even though 81% is not close to 95% of the target 

confidence level, note that the confidence level of 
2FP  for the input model with the confidence level is much larger than 

the one without confidence level, 28%. Further, the output confidence level is obtained by counting the number of cases 

that the probability of failure is smaller than 2.275%, but among 10% of the other cases, 
2FP  is less than 3.0%. That is, 90% 

of the estimated probabilities of failure are less than 3.0%. If the marginal CDF and copula types are known, the 

confidence level of the output performance becomes close to 95% as shown in Table 8.  

 

Table 8. Parameters of Probability of Failures Using Correct Marginal Distribution and Copula Type ( , ns=30, 

100 data sets) 

 

Parameters 
Input model without confidence level Input model with confidence level 

1FP (%) 
2FP (%) (%) (%) 

Min 0.257 0.727 0.016 0.121 

Max 6.855 6.402 2.171 2.597 

Mean 2.536 2.560 0.531 0.962 

Estimated 

Confidence level 
56% 43% 99% 92% 

 

Consider that two variables are highly correlated as 0.8  . As shown in Table 2, the confidence level of the input 

model for small number of samples, ns=30, is very small, which is only 52%. Thus, it is also interesting to obtain the 

confidence level of the output performance. For this, 100 data sets of 30 samples for 0.8   are generated from the Frank 

copula with  1 ~ 1.608,0.060X LN  and  2

2 ~ 5.0,0.3X N . In this case, since the marginal CDF types and parameters 

are the same as the case for 0.5  , the numbers of identification for marginal CDFs are similar to Table 5 as shown in 

Table 9. For the high correlation coefficient, because it is easy to identify the copula type due to its distinct shape, the 

correct copula (Frank) is more correctly identified than for , as shown in Table 10.  

  

Table 9. Number of Identifications for Marginal CDF (ns=30, 100 data sets) 

 

Variables Gaussian Weibull Gamma Lognormal Gumbel Extreme Extreme type-II 

1X  33 5 12 39 8 1 2 

2X  40 12 10 29 5 0 4 

 

Table 10. Number of Identifications for Copula ( 0.8  , ns=30, 100 data sets) 

 

Clayton  AMH  Gumbel  Frank  A12  A14  FGM  Gaussian  Independent   

3 0 3 82 5 3 0 4 0  

 

Table 11 shows the minimum, mean, and maximum values of the estimated probability of failures for . As 

expected, the confidence levels of the output performance with the confidence level are much higher than those without 

confidence level. The output confidence levels for  and  are 99% and 70%, respectively, which are much higher 

than the confidence level of the input model, 52%, for the Frank copula. Even though 70% is not close to 95% of the target 

confidence level, the output confidence level for the input model with the confidence level is much larger than the one 

without confidence level, 51%. Further, 80% of the estimated probabilities of failure are less than 3.0%.  

When the correct marginal CDFs and copula types are used as the input model, those yield the higher confidence 

levels of the output performance than the identified ones, as shown in Table 12, except the output confidence level for 

 
. Since the identified models sometimes yield irregular contour shapes, which make the optimum designs be far away 

from the first constraint in this example, the output confidence levels using the incorrectly identified models are higher 
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1FP
2FP

0.5 
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1FP
2FP

1FP



 
 

than the one using the true model. On the other hand, when the upper bounds of the estimated standard deviation are used, 

those make the contours long and sharp with the positive correlation, and thus the optimum design becomes far away from 

the first constraint regardless of the identified models. Thus, the output confidence levels with true models are higher than 

the ones with identified models.  

 

Table 11. Parameters of Probability of Failures Using Identified Marginal Distribution and Copula Type ( , ns=30, 

100 data sets)   

 

Parameters 
Input model without confidence level Input model with confidence level 

(%) (%) (%) (%) 

Min 0.075 0.578 0.000 0.270 

Mean 2.048 2.711 0.364 1.953 

Max 9.106 12.09 3.292 6.697 

Estimated  

Confidence level 
70% 51% 99% 70% 

 

Table 12. Parameters of Probability of Failures Using Correct Marginal Distribution and Copula Type ( , ns=30, 

100 data sets)   

 

Parameters 
Input model without confidence level Input model with confidence level 

(%) (%) (%) (%) 

Min 0.196 0.368 0.011 0.106 

Mean 2.366 2.646 0.463 1.519 

Max 8.704 10.60 3.155 7.265 

Estimated  

Confidence level 
56% 54% 98% 81% 

 

7.2. Roadarm Example  

The roadarm in the M1A1 tank is modeled using 1572 eight-node isoparametric finite elements (SOLID45) and four beam 

elements (BEAM44) of a commercial program, ANSYS [24], as shown in Fig. 9. The material of the roadarm is S4340 

steel with Young’s modulus E=3.0×10
7
 psi and Poisson’s ratio ν=0.3. The durability analysis of the roadarm is carried out 

to obtain the fatigue life contour using Durability and Reliability Analysis Workspace (DRAW) [25,26]. The fatigue lives 

at the critical nodes are selected for design constraints of the RBDO in Fig. 10. 

 

 
Figure 9. Finite Element Model of Roadarm 

 

 
Figure 10. Fatigue Life Contour and Critical Nodes of Roadarm 

 

0.8 

1FP
2FP

1FP
2FP

0.8 

1FP
2FP

1FP
2FP



 
 

In Fig. 11, the shape design variables consist of four cross-sectional shapes of the roadarm where the widths 

(x1-direction) of the cross-sectional shapes are defined as design variables, d1, d3, d5, and d7, at intersections 1, 2, 3, and 4, 

respectively, and the heights (x3-direction) of the cross-sectional shapes are defined as design variables, d2, d4, d6, and d8. 

Table 13 shows the initial design point, lower and upper bounds of eight design variables with their standard deviations 

and distribution types, and four material parameters with their means and standard deviations.  

 

 
Figure 11. Shape Design Variables for Roadarm 

 

Table 13. Random Variables and Fatigue Material Properties 

 

Random 

Variables 

Lower Bound 
L

d  

Initial 

Design 
0

d  

Upper 

Bound 
U

d  

Std. 
Distribution 

Type 

d1 1.3500 1.7500 2.1500 0.0875 Gaussian 

d2 2.6496 3.2496 3.7496 0.1625 Gaussian 

d3 1.3500 1.7500 2.1500 0.0875 Gaussian 

d4 2.5703 3.1703 3.6703 0.1585 Gaussian 

d5 1.3563 1.7563 2.1563 0.0878 Gaussian 

d6 2.4377 3.0377 3.5377 0.1519 Gaussian 

d7 1.3517 1.7517 2.1517 0.0876 Gaussian 

d8 2.5085 2.9085 3.4085 0.1454 Gaussian 

Fatigue Material Properties 

Non-design Uncertainties Mean Std. 
Distribution 

Type 

Fatigue Strength  

Coefficient, f   
177000 44250 Lognormal 

Fatigue Strength Exponent, b -0.073 0.018 Gaussian 

Fatigue Ductility  

Coefficient, f   
0.410 0.205 Lognormal 

Fatigue Ductility Exponent, c -0.600 0.150 Gaussian 

 

To test the input model with the confidence level, experimental data need to be used to obtain the upper bound of the 

standard deviation from the data. However, the experimental data of S4340, which is used in the roadarm, is not available. 

Thus, in this paper, 30 paired data are generated from an assumed true input model. First, it is assumed that Frank copula 

for 
'

f  and b, and Gaussian copula for 
'

f  and c, respectively, are the true copulas. As the two copulas well describe the 

experimental data of SAE 950X as shown in Fig. 12, it seems to be reasonable to select these two copulas to model joint 

CDFs of the four correlated random parameters of S4340. The marginal distribution types of S4340 are assumed to be the 

same as those of SAE 950X. 

Second, once the copula and marginal distribution types are obtained, the mean and standard deviation of S4340 need 

to be determined. The mean values of four fatigue material properties of S4340 are known, but the standard deviations are 

unknown. Therefore, the standard deviations are assumed using the coefficient of variation (COV), which is the ratio of 



 
 

the standard deviation to the mean, of SAE 950X. The coefficient of variation of SAE 950X is 115% for 
'

f , and 25% for 

other material properties [1]. Since S4340 is stronger material than SAE 950X, in this paper, it is assumed that COV of 

S4340 is 50% for 
'

f , and 25% for other material properties to estimate the standard deviation as shown in Table 13. 

Assuming that a true input model has the above statistical information on S4340, 30 data are randomly generated, and 

RBDO is carried out using the estimated input model with and without confidence level. Table 14 shows the estimated 

parameters, and the target confidence level is specified as 95% in this roadarm example. 

 

 

       (a) 
'

f  and b            (b) 
'

f  and c 

Figure 12. PDF Contours of Gaussian and Frank Copula Identified from 29 Paired Data of SAE 950X Steel 

 

Table 14. Estimated Parameters and Identified Copulas 

 

 f   b f   c 

E  176738 0.073 0.395 0.594   
E  34939 0.015      0.166 0.125   
U  46969 0.020 0.223 0.168 
E  -0.830 -0.908 

Copula Gaussian Frank 

 

The RBDO formulation of the roadarm is defined to 
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Table 15 shows a comparison of RBDO results using the MPP-based DRM for various input models. First, the RBDO 

results are compared for the independent and correlated input fatigue material properties. As shown in the table, when the 

correlation between material properties is considered, the optimized weight of the roadarm is significantly reduced from 

592.22 to 514.02 for the same target reliability because the material properties are highly correlated. Thus, it is very 

important to correctly model the correlation between material properties to carry out the RBDO. Second, when the input 

model with the estimated standard deviation E  is used, the underestimated standard deviations (see Tables 13 and 14) 

yield an unreliable optimum design with the optimum cost that is smaller than the optimum cost obtained using the true 

input model (511.34 vs. 514.02). Since the MCS cannot be used for the benchmark test for this problem due to 

computational cost, the comparison of costs is used as a measure to check whether the obtained optimum design is reliable 

or not. On the other hand, when the input model with the upper bound of the standard deviation U  is used, the obtained 



 
 

optimum cost is higher than the optimum cost obtained from the true input model (523.85 vs. 514.02), which indicates the 

obtained optimum design is reliable. Accordingly, the input model with a confidence level is indeed necessary to obtain a 

reliable optimum design. 

  

Table 15. DRM-Based RBDO Comparison 

 

 Initial Independent 
Correlated 

True E  U  

d1 1.750 2.194 1.928 1.959 2.013 

d2 3.250 2.650 2.650 2.650 2.650 

d3 1.750 2.602 2.067 2.030 2.047 

d4 3.170 3.010 2.577 2.615 2.616 

d5 1.756 2.656 1.776 1.705 1.770 

d6 3.038 2.538 3.535 3.537 3.538 

d7 1.752 2.422 2.075 2.060 2.152 

d8 2.908 2.895 2.512 2.509 2.645 

Cost 515.09 592.22 514.02 511.34 523.85 

 

 

8. Conclusion  

To obtain reliable RBDO results, it is important to obtain an accurate input model from given experimental data for 

RBDO. The input model can be generated by identifying marginal CDFs and copula using the Bayesian method and by 

quantifying marginal and correlation parameters based on the given data. However, in practical applications, the 

experimental data is often insufficient, and thus it is difficult to obtain an accurate input model.  

To offset inaccurate estimation of the input model, confidence level is incorporated in the input model for RBDO by 

using the upper bound of the confidence interval of the standard deviation. Since the confidence level of the input model 

is not the same as the confidence level of the output performance, a conservative measure of the confidence level of the 

input model is assessed by calculating the probability that the estimated joint PDF contour for the target reliability index 

t  fully covers the true joint PDF contour for t . Simulation results show that, even though the upper bound of the 95% 

confidence interval of the standard deviation is used, the confidence level of the input model is significantly lower (as 

shown in Tables 2 and 3) when the sample size is small. On the other hand, since the measure of the confidence level used 

of the input model is conservative, the confidence level of the optimum design meeting the target reliability is higher as 

shown in Table 7 and 11 for the mathematical example. However, the results of Table 7 and 11 still do not reach the target 

confidence level of 95%. To achieve the target confidence level of the output performance especially for small number of 

samples with the high correlation, new options, such as the mean or correlation coefficient to enlarge the contour for t , 

is currently being investigated. In addition, the upper bound of the prediction interval of the standard deviation is another 

option to investigate. 
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