29. Use the finite element method to solve the plane truss shown below. Assume $A E=10^{6} \mathrm{~N}, L=1 \mathrm{~m}$. Determine the nodal displacements, forces in each element and the support reactions.

30. The properties of the two elements of a plane truss are given in the table below. Note that an external force of $10,000 \mathrm{~N}$ is acting on the truss at node 2 .

Elem.	$i \rightarrow j$	ϕ	l	m	$L(\mathrm{~m})$	$A\left(\mathrm{~cm}^{2}\right)$	$E(\mathrm{GPa})$	$\alpha\left(/{ }^{\circ} \mathrm{C}\right)$	$\Delta T\left({ }^{\circ} \mathrm{C}\right)$
1	$1 \rightarrow 2$	90	0	1	1	1	100	20×10^{-6}	-100
2	$2 \rightarrow 3$	0	1	0	1	1	100	20×10^{-6}	0

(a)

Write the thermal force vector踥
(b) Assemble the thermal force vectors to form the global thermal force $\left\{\mathbf{F}_{T}\right\}$, which is a 2×1 matrix.
(c) Solve the problem for the unknown displacements. Determine the element force P in each element.
(d) Show that equilibrium is satisfied at node 2 .

