1. Determine shape functions of a bar element shown in the figure by assuming the following form of displacement: $u(x)=a_{1} x+a_{2} x^{2}$; that is, obtain $N_{1}(x)$ and $N_{2}(x)$ such that $u(x)=N_{1}(x) u_{1}+N_{2}(x) u_{2}$. Calculate axial strain $\varepsilon_{x x}=\mathrm{d} u / \mathrm{d} x$ when $u_{1}=u_{2}=1$ (rigid body motion). Explain why strain is not zero under the rigid-body motion.

2. Consider a finite element with three nodes, as shown in the figure. When the solution is approximated using $u(x)=N_{1}(x) u_{1}+N_{2}(x) u_{2}+N_{3}(x) u_{3}$,
(a) calculate the interpolation functions $N_{1}(x), N_{2}(x)$, and $N_{3}(x)$ if it is intended to obtain the displacement field in the following form: $u(x)=c_{0}+c_{1} \sqrt{x}+c_{2} x$; and
(b) when the nodal displacements are given as: $u_{1}=0, u_{2}=0.5$, and $u_{3}=1$, sketch the function $u(x)$.

3. Derive shape functions of a beam element using parametric coordinate $s \in[-1,1]$.
