Determine shape functions of a bar element shown in the figure by assuming the following form of displacement: u(x) = a₁x + a₂x²; that is, obtain N₁(x) and N₂(x) such that u(x) = N₁(x)u₁ + N₂(x)u₂. Calculate axial strain ε_{xx} = du / dx when u₁ = u₂ = 1 (rigid body motion). Explain why strain is not zero under the rigid-body motion.

- 2. Consider a finite element with three nodes, as shown in the figure. When the solution is approximated using $u(x) = N_1(x)u_1 + N_2(x)u_2 + N_3(x)u_3$,
 - (a) calculate the interpolation functions $N_1(x)$, $N_2(x)$, and $N_3(x)$ if it is intended to obtain the displacement field in the following form: $u(x) = c_0 + c_1\sqrt{x} + c_2x$; and
 - (b) when the nodal displacements are given as: $u_1 = 0, u_2 = 0.5$, and $u_3 = 1$, sketch the function u(x).

3. Derive shape functions of a beam element using parametric coordinate $s \in [-1,1]$.