

Homework #4

Use the Rayleigh-Ritz method to determine the deflection v(x), bending moment M(x), and shear force V_y(x) for the beam shown in the figure. The bending moment and shear force are calculated from the deflection as: M(x) = EId²v / dx² and V_y(x) = -EId³v / dx³. Assume the displacement as v(x) = c₀ + c₁x + c₂x² + c₃x³, and EI = 2,000 N-m², L = 1 m, and p₀ = 200 N/m, and C = 100 N-m. Make sure the displacement boundary conditions are satisfied a priori.

Hint: The potential energy of a couple is calculated as V = -C dv / dx, where the rotation is calculated at the point of application of the couple.

2. Use two equal-length beam elements to determine the deflection of the beam shown below. Estimate the deflection at point *B*, which is at 0.5 m from the left support. $EI = 1000 \text{ N-m}^2$.

- 3. The frame shown in the figure is clamped at the left end and supported on a hinged roller at the right end. The radius of the circular cross section r = 0.04 m. An axial force P and a couple C act at the right end. Assume the following numerical values: L = 1 m, E = 80 GPa, P = 10,000 N, C = 1,000 Nm.
 - (a) Use one element to determine the rotation θ at the right support.
 - (b) What is the deflection of the beam at x = L/2?
 - (c) What is the maximum tensile stress? Where does it occur?

