CHAP 5 Review of Solid Mechanics







STRESS

« Stress
— Fundamental concept related to the safety of a structure
— Often used as criteria for mechanical design
— Internal force created by deforming the shape against external loads.

AA—  F=KAL

> € >

L AL

— Linear elasticity: the relation between internal force and deformation is
linear.




« Surface traction (Stress)

— The entire body is in equilibrium with external
forces (f, ~ f;)

— The imaginary cut body is in equilibrium due to
external forces (f,, f,, f;) and internal forces

— Internal force acting at a point P
on a plane whose unit normal is n:

T™ = lim AF
A0 AA
— The surface traction depends on the unit
normal direction n. - -
— Surface traction will change when n changes. | ’
— unit = force per unit area (pressure) X
T =Ti+Tj+Tk HT<n> ~T= \/Tf +T2 4 T2




NORMAL AND SHEAR STRESSES

 Normal and shear stresses
— Decompose T into normal and tangential components

G, normal stress stress component parallel to n
T, shear stress  stress component perpendicular to n
c. =T".n
|| 2 2
HT =0, + 1T,

2
2

W=y

* Practice Example 1.2 in the textbook

What if T and n are in
the same direction?




CARTESIAN STRESS COMPONENTS

Surface traction changes according to the direction of the surface.
Impossible to store stress information for all directions.

Let’s store surface traction parallel to the three coordinate directions.
Surface traction in other directions can be calculated from them.
Consider the x-face of an infinitesimal cube

(x) — 1705 (x) 3 (x)
T =T i+ T,Vj+ T,k

Ax
AF = AFXi + Aij + AFZk
T™ = o, i+ ’nyj +1 K Az T
AF
_ 4 -
= lim AF,
Gxx o AA,—0 AA Gxx Z-xy /
X Ay
AF
{ Ty = lim —2 X Y
AA, —0 AAX
__AF,
t.. = lim
X2 AA,—0 AAX




CARTESIAN COMPONENTS cont.

— First index is the face and the second index is its direction

— When two indices are the same, normal stress, otherwise shear stress.
— Continuation for other surfaces.

— Total nine components

— Same stress components are defined for the negative planes.

Comp. Description

O, Normal stress on the x face in the x dir.

Oy Normal stress on the y face in the y dir.

G Normal stress on the z face in the z dir.
Y4

T Shear stress on the x face in the y dir.
Xy

T Shear stress on the y face in the x dir.
yX

T Shear stress on the y face in the z dir. z
YZ

T Shear stress on the z face in the y dir.
zy

T Shear stress on the x face in the z dir.

XZ

T, Shear stress on the z face in the x dir.




CARTESIAN COMPONENTS cont.

« Sign convention
— Positive when tension and negative when compression.

— Shear stress acting on the positive face is positive when it is acting in
the positive coordinate direction.

sgn(o,, ) = sgn(n)x sgn(AF, )
sgn(t,, ) = sgn(n)x sgn(AF, )

y

« Example




STRESS TRANSFORMATION

— |If stress components in xyz-planes are known, it is possible to
determine the surface traction acting on any plane.

— Consider a plane whose normal is n.

n=ni+nj+nk=4n ¢

z

— Surface area (AABC\= A)
APAB = An,; APBC = An_; APAC =An,

— The surface traction

T = T+ Tj 4 Tk

— Force balance (h — 0)
> F =T"A-oc,An, -1, An —1,An, =0

(n) _
T."=o,n + TN, + 1,0,

X




STRESS TRANSFORMATION cont.

 All three-directions
(n) _
."=o,n + T, N, + 1,0,
(n) _
Ty =1,N, +o,N, +1,0N,

(n) _
LV=tn + TN, +0,N,

z

 Matrix notation _ _
0) T T

XX yX zx
T" = [G] n [G] | Yy Op Ty
Tz Tyz O,

— [o]: stress matrix; completely characterize the state of stress at a point
 Normal and shear components

T"™ .n=n-[c]'n < - {n}'[c]{n}

. —JMT .
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SYMMETRY OF STRESS TENSOR

Stress tensor should be symmetric
9 components =——> 6 components T

Equilibrium of the angular moment

S'M=Allt,, —7,) = 0 yt
rxylAl OL_x Trxy

— ’L'Xy = ’L'yx
Similarly for all three directions: Al
_ C P D
TXy o TyX z-yx
— r )
Tyz _ sz cSxx
TXZ - TZX ny GXX TyX TZX
: - Oz [6]=|T, O, T
Let’'s use vector notation: {c} =7 “} | ' Cw otz
T
yz
_sz Tyz CYzz_
TZX
Ly




PRINCIPAL STRESSES

Can it be possible to find planes that have zero shear stresses?
Normal stress = principal stress
Normal direction = principal direction
Extreme values (max or min) of stress at the point

Three principal stresses and directions.

Stress vector (T() // normal vector (n)

T™ — 5 n / n and ¢, are unknown

n

[c]'-n=c.n

([o]-o,[)-n=0

c, Ty T
G,, — O, T
T c

G, principal stress
n: principal direction

Eigenvalue problem

S

What would
be the
solution?

12




PRINCIPAL STRESSES cont.

— n = 0 satisfies the equation: trivial solution
— Non-trivial solution when the determinant is zero.

Oux — O Tyx Tox
Ty G,, — O, 1, |=0
Tz Tyz G, — 6,

— Expanding the determinant equation:
=0+ C,, + 0,
2 _
G, —hoy +ho, -1l =0 , =06,06,, +0,6, +6,0, 1)2( —7:2 -1
|—GGG+2’E’C’C—G’C—G’C - 0o

XX T yy ~zz Xy “yz ©zx XX yy ~zx zz ¥ xy

— 14, I, I3z invariants of the stress matrix [o], which are independent of
coordinate systems.

— Three roots: principal stresses, ¢, > 6, > o,

T

2
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PRINCIPAL DIRECTION

Calculate principal direction using principal stress.
Substitute each principal stress at a time.

_ (A1 )
cSXX G'] Tyx sz nX O
1
— 3 =
Ty G,, —O; T, n, =10
1
i Tz Tyz G, — 01_ \nz) \O)

Since the determinant is zero (i.e., the matrix is singular), three
equations are not independent.

An infinite number of solutions exist.
Need one more relation to uniquely determine n.

[ = )2+ ()2 + ()P =1 =123

Infinite solutions mean the same direction with different magnitude.

We select the one that has unit magnitude

14




PRINCIPAL DIRECTION cont.

Planes on which the principal stresses act are mutually perpendicular
Let’'s consider two principal directions n' and ni, with i #j.

[6]-n' =on
[6]-n' = Gjnj

Scalar products using ni and n/,
n'-[c]-n'=on’-n
n'-[o]-n=on-n

Subtract two equations,
(o, —Gj)ni n' =0

Since two principal stresses are different,
n'-n' =0, when i#]

15




PRINCIPAL DIRECTION cont.

 There are three cases for principal directions:

1. 04, 0,, and g, are distinct = principal directions are three unique
mutually orthogonal unit vectors.

2. 0,=0,and o, are distinct = n3is a unique principal direction, and
any two orthogonal directions on the plane that is perpendicular to n3
are principal directions.

3. 0,=0,=05;= any three orthogonal directions are principal directions.
This state of stress corresponds to a hydrostatic pressure.

@




COORDINATE TRANSFORMATION

When [o],,, is given, what would be the components in a different

[ Iy |

coordinate system x'y'z’ (i.e., [0],,)7?
Unit vectors in x'y'z’-coordinates:

rb1\ (b2\ b3

1 1 1
b'= b, b>={b?}, b® = b1

b b b

b'={1,0, 0} in x'y'z' coordinates,
while b' = {b], b}, b} in xyz coordinates

the rotational transformation matrix

INI=[b" b®> b%]=|b, b? b}

Stress does not rotate. The coordinates rotate

17




COORDINATE TRANSFORMATION cont.

[N] transforms a vector in the x'y'z' coordinates into the xyz coordinates,

while [N]" transforms a vector in the xyz coordinates into the x'y'z’
coordinates.

Consider by, = {1, 0, 0}T: - i’
b1
xyz_[N] bj(yz_ b12> >x
o)

z

Stress transformation: Using stress vectors,

[Te) 169 7691 =[6],,b' b> b’]=[c],,IN]

By multiplying [N]" the stress vectors can be represented in the x'y'z’

coordinates

[6],, =IN]'[c],,[N]

The first [N] transforms the plane, while the second transforms the
force.

18




MAXIMUM SHEAR STRESS

Important in the failure criteria of the material
Mohr’s circle
maximum shear stress

c,—O
. =217%93

max 2

Normal stress
at max shear stress plane

_ 0,10,

" 2

o)

19




What Stress Could Be Design Criteria?

— It must be independent of the coordinate system.
— Stress Invariants

— Principal Stresses

— Maximum Shear Stress

20




Exercise

Direction n,:n,:n, = 3:4:12. Determine T, magnitude of T"),
normal stress o, shear stress t,,, angle between T(" and n.

[o] =

If 6,, =90, 6,, = -4, 1,, =30, and 6, = 1,,

c,, and t,.

CYxx(_\
o 400

13 13
13 26
0 -13

0"
-13
-39

Xy

n
O

t,, = 0, find T,

21




Exercise

/. Determine the principal stresses and their associated
directions, when the stress matrix at a point is given by

[o] =

—

11
1 2|MPa
2 1

8. Let x'y'z' coordinate system be defined using the three
principal directions obtained from Problem 7. Determine the
transformed stress matrix [0],,., in the new coordinates

system

22







Elementary Definition of Strain

— Strain is defined as the elongation per unit length

— Tensile (normal) strains in x- and y-directions

i Au,  du,
o T 0 A Ox Textbook has different, but

AU ou more rigorous derivations

e = |lim—L=—2

W Ay—0 Ay B 6y

— Strain is a dimensionless quantity. Positive for elongation and negative

for compression
24




Elementary Definition of Strain

Shear strain is the tangent of the change in angle between two

originally perpendicular axes A
u

0, ~tano AU !
~tano, =
1 1 AX 0211
Au Ay Iy
0, ~tanb, = AX \7r/2 N2 e
-~ A
y pla= 's 6, Uy,

Shear strain (change of angle)

y—@

AX—0 AX Ay—0 Ay 8)( ay

1 1(0u, odu,
X — _yx — A +
o2 2L ox oy
Positive when the angle between two positive (or two negative) faces
IS reduced and negative when the angle is increased.

Valid for small deformation

25




Rigorous Definition of Strain

Strain: a quantitative measure of deformation
— Normal strain: change in length of a line segment
— Shear strain: change in angle between two perpendicular line segments

Displacement of P = (u, v, w)
Displacement of Q & R

_ U, =u+—A
UQ_U+_(9XAX R oy y
oV oV
Vo, =V +—AX Vg =V+—A
Q ax R ay y

OW OW
W~. =W+ —AX — — A
Q " Wy w+ay y

26




Displacement Field

» The coordinates of P, Q, and R before and after deformation
P:(xy,z)
Q:(x+ Ax,y,2)
R:(x,y +Ay,z)
P :(Xx+Up,y+Vp,Z+Wp)=(X+UY+V,Z+W)
Q": (X +Ax +ug,y +Vvq,zZ+wq)

:(x+Ax+u+%Ax,y+v+%Ax,z+W+g—¥Ax)

R':(x+ugp,y + Ay +Vg,Z+Wg)

ou ov ow
_ ZA A A A
(X+u+5,y v,y + y+v+ay y,2+w+8y yY)

« Length of the line segment P'Q’

P'Q" = \/(Xp/ — Xg )2 +(Yp — Yo )2 +(2p — 2oy )2

27




Deformation Field

« Length of the line segment P'Q’

ouY (ov) (ow)
' et il i
PQ_AX\/1+8X lax) T ox
1/2
u (ou) (v (ow)
= AX 1—|—25 Ix + Ix + Ox
du 1(ou 1(ov) 1(ow) ou
~ — + == —| — —| = ~ Ax|1+—
AX1+8x+2 )4 2\ Ox 2 8x} X Jr5)x
Linear Nonlinear = Ignore H.O.T. when displacement

gradients are small
 Linear normal strain

/ _ P/Q/ L PQ _ @\
Y =Te N
S ov . ow
yy — @ zzZ 7 957
- 28




Deformation Field

* Shear strain v,,

— change in angle between two lines originally parallel to x— and y—axes

91ZYQ’—YQ:@ QZZXR'—XR:@
AX 0x Ay oy
Y xy =01 + 0y = g;+g)‘i\
_ov  ow Engineering shear strain
Wz =5z " oy
ow ou
Y2 = 55 T oz
/8 _ 1(ou N ov | )
oo 2l0y  Ox
. 1(ov . ow
2 2l0z 9y
_1({ow  du
> ~2\ox T oz)) N




STRAIN MATRIX

— Strain matrix and strain vector e )
XX
B 7 e
yy
8xx 8xy 8xz
[ — . 8zz
g]= Eyx By By {e} =1 >
’YyZ
8zx 8zy 8zz
i il v
\yXy)

— Normal component: €., =n-[g]-n

— Coordinate transformation: [¢],,. = [N]'[€],,,[N]
— Principal strain: [e]-n=An

B 81 2 82 2 83 ¥ max 81 B 83

— Maximum shear strain: "o~ 5

« Will the principal direction of strain be the same as that of
stress?

30




STRESS VS STRAIN

[c] is @ symmetric 3 X 3 matrix

[€] is @ symmetric 3 X 3 matrix

Normal stress in the direction n is

c..=h-[c]-n

Normal strain in the direction n is

e, =N-[e]'Nn

Transformation of stress
[G]x’y'z’ - [N]T [G]xyz [N]

Transformation of strain
[8]x'y’z' — [N]T [8]xyz [N]

Three mutually perpendicular
principal directions and principal
stresses can be computed as
eigenvalues and eigenvectors of
the stress matrix as [c]-n=An

Three mutually perpendicular
principal directions and principal
strains can be computed as
eigenvalues and eigenvectors of
the strain matrix as [€]-n=An

31




Compatibility Conditions

« 3 displacements (u, v, w) versus six strain components

— Physically suitable 3 displacement fields can be used to determine six
strain components

— However, six arbitrary strain fields may not physically possible to
produce continuous 3 displacement fields

— Six strain components must satisfy compatibility conditions to yield
non-discontinuous and non-overlapping displacement fields

« 2D compatibility condition

%Yy _ 0%y n 0%,y
oxdy — gy? = Ox?
— Take home message: all strain components are not independent
e Ex) ulxy)=x*+y% vixy)=x’y?

e =4X°, €, =2X%y, 7, =4y° +2xy°

32




Exercise

« The displacement field in a solid is given by u=kx?, v=2kxy?,
and w=k(x + y)z, where k is a constant. (a) Write the strain

matrix and (b) what is normal strain in the direction of n = {1,
1, 1}7?

33




5.4 STRESS-STRAIN
RELATIONS

34




STRESS-STRAIN RELATIONSHIP

Applied Load => shape change (strain) = stress
There must be a relation between stress and strain

Linear Elasticity: Simplest and most commonly used

Uni-axial Stress:
— Axial force F will generate stress 6, =F /A
— In the elastic range, the relation between stress and strain is

O = Egzz

Fe—( — O——F

— Reduction of cross-section

e, =€, =—VE

XX yy zz

— E: Young’'s modulus, v: Poisson’s ratio

35




UNI-AXIAL TENSION TEST

oh

Ultlmate . R g

stress

Yield stress

Fracture

|
|
|
|
|

Proportional :

limit !
|
|
' >
|< - >le > g
Strain _ "Necking

Terms Explanations hardening

Proportional limit
Elastic limit
Yield stress
Strain hardening
Ultimate stress
Necking

Fracture

The greatest stress for which stress is still proportional to strain
The greatest stress without resulting in any permanent strain
The stress required to produce 0.2% plastic strain

A region where more stress 1s required to deform the material
The maximum stress the material can resist

Cross section of the specimen reduces during deformation

Material failure

36




LINEAR ELASTICITY (HOOKE’S LAW)

* When the material is in the Proportional Limit (or Elastic Limit)
* In General 3-D Relationship

{o} =[C]-{¢}
O _C11 C12 C13 C14 C15 C16_ fgxx
Oy Cz1 C22 C23 Cz4 C25 C26 Cyy
(o) = | O . [C]= Cyi Gy Gy Gy Gy Gy e} =1 €2 |
Tyz Cu Cp Cp Cp Cp Cu Yyz
T« C51 C52 C53 C54 C55 C56 Y o«
| Ty _C61 Coo Cos Cau GCgs Cge | Ty

Stress-Strain Matrix

— For homogeneous, isotropic material 36 constants can be reduced to 2
independent constants.

37




LINEAR ELASTICITY (HOOKE’S LAW) cont.

» |sotropic Material:
— Stress in terms of strain: {c} =[C] - {¢}

G, 1-v v vVollE,
10, (= £ v 1-v v |{g,¢
(1+v)(1-2v) v v 1-vll,

Txy = Gny’ Tyz = Gsz’ TZX = C;'sz

— Strain in terms of stress

o _ N Shear Modulus
€, : 1 —v —v||o,
<8yy>:E —v 1 —V |10, ¢ G- E
gzz _—V —V 1 | Gzz 2(1 + V)
TX T z sz
T




Simplified Relationships for Plane Solids

 Plane Solids

— All engineering problems are 3-D. It is the engineer who
approximates the problem using 1-D (beam or truss) or 2-
D (plane stress or strain).

— Stress and strain are either zero or constant in the
direction of the thickness.

— System of coupled second-order partial differential
equation

— Plane stress and plane strain: different constraints
Imposed in the thickness direction

— Plane stress: zero stresses in the thickness direction (thin
plate with in-plane forces)

— Plane strain: zero strains in the thickness direction (thick
solid with constant thickness, gun barrel)

— Main variables: u (x-displacement) and v (y-displacement) 39




PLANE STRESS PROBLEM

Plane Stress Problem:

— Thickness is much smaller than the length and width dimensions

— Thin plate or disk with applied in-plane forces

— z-directional stresses are zero at the top and bottom surfaces

— Thus, it is safe to assume that they are also zero along the thickness

Gzz = sz = Tyz = O
— Non-zero stress components:

Oy ny’ Txy

— Non-zero strain components:

Exx: gyy’ gxy’ €27




PLANE STRESS PROBLEM cont.

e Stress-strain relation

(GXX\ . 1 v 0o stX\

10, = v 1 0 €, ¢ {o}=[C_Ne}
1—v 1 4 °

\ﬁcxyj _O 0 5(1—\/)_ \yxyj

— Evenif g,, is not zero, it is not included in the stress-strain relation
because it can be calculated from the following relation:

v
g = —E(GXX +0,,)

Y4

* How to derive plane stress relation?

— Solve for ¢,, in terms of ¢,, and ¢, from the relation of 5,, = 0 and Eq.
(1.57)

— Write 6,, and o, in terms of g, and ¢,




PLANE STRAIN PROBLEM

* Plane Strain Problem
— Thickness dimension is much larger than other two dimensions.
— Deformation in the thickness direction is constrained.
— Strain in z-dir is zero

£.=0,¢.=0,¢,_ =0

— Non-zero stress components: o,,, 0., T,,, O

xx» Cyyr "xyr Yzz-

— Non-zero strain components: €,,, €,,, &,,.

L

Plane strain model




PLANE STRAIN PROBLEM cont.

Plan Strain Problem
— Stress-strain relation

-

0]

XX

10

T

S
Yy

L XY

E

T (1+v)(1-2v)

< {0} =[C lie}

— Even if 0,,is not zero, it is not included in the stress-strain relation

because it can be calculated from the following relation:

0)

Y4

Ev

(1+v)(1=2v)

(e, +¢€

yy)

43




EQUIVALENCE

* A single program can be used to solve both the plane stress
and plane strain problems by converting material properties.

From — To E v
- -
Plane strain — Plane El1—- v v
stress l+v l+v
E
Plane stress — Plane 2 e
strain 1— v l-v
l-v




Exercise

« A thin plate of width b, thickness t, and length L is placed
between two frictionless rigid walls a distance b apart and is
acted on by an axial force P. The material properties are
Young’'s modulus E and Poisson’s ratio v. (a) Find the stress
and strain components in the xyz coordinate system, and (b)
find the displacement field.

y y

P b

P z

X —>| |e—

_ 0

L

45




5.5 BOUNDARY VALUE
PROBLEMS

46




O

Equilibrium Equations

Stress field in differential element

X4—
2
1_) Gxx

e Equilibrium in x-direction: |
O-xx x—@
(Uxx|x+d7x dy_(axx|x_d7x)dy 22- y *
— z-yx dy
—|—[Tyx ‘y+d7y dx — | T,y ‘y_d7y dx =0 y7|
O-yy‘y_ﬂ
B do,, dx B - Joyy, dX 00,y 2
B OTx dy OTx dy 0Ty
(2) = [Tyx\y + 5y 2 dx — Tyx\y 3y 2 dx = 5 dxdy
« After deleting dxdy, we get equilibrium equation:
/80)0( I OTyx O\
Ox oy
* In y-direction: Oy D% _

X+—

47




Equilibrium Equations

 Extension to 3D differential element

ox oy o
OT 7 aTYZ o, —0
OX oy 0z

* Traction (stress) boundary conditions
— The condition that the stress field must satisfy on the boundary

OxxMy + TyxMy T Tzl = tx
Taylx + 0yl + TN, =t, = [o]{n} = {TM} =t

Txzlx + Ty Ny + 05N, = t,




2D Boundary Value Problem
_ O + 2
* Governing D.E. A 2
f 8axx aTxy L ——)Tyx y+%
ox oy The=0 b% Tyl a
8'rxy 80yy b — O O, | dx g »T )2 o x+@
8x+8y+y_ o b, *|| 2
k | Y
« Definition of strain TheS
_ Ou _Ov _(Ou Ov T ST
Exx — a, 5yy — @, ’ny — 8}/ + Ox 2y
» Stress-Strain Relation Ol
arx Ci1 Ciz Cy3 rgxx
oy 1 =1Ca1 Co Cozligy 1 & {0} =[Cle}
T xy _C31 Cs2 C33_ | Vxy |

governing differential equation is the second-order

Since stress involves first-order derivative of displacements, the

49




2D Boundary Value Problem

« Compatibility condition
0%y _ %€ n 0%y
oxdy  9y? = Ox?

* Boundary Conditions
— All differential equations must be accompanied by boundary conditions

u=ag, onSg

on=T, on Sy

- S, is the essential boundary and Sy is the natural boundary
— @: prescribed (specified) displacement (usually zero for linear problem)
— T: prescribed (specified) surface traction force

* Objective: to determine the displacement fields u(x, y) and
v(X, y) that satisfy the D.E. and the B.C.

50




BOUNDARY-VALUE PROBLEM

 When boundary conditions are given, how can we calculate
the displacement, stress, and strain of the structure?
— Solve for displacement

Applied
loads

1o} = [Cl {&

AN\

Boundary
condition

— Equilibrium equation

— Constitutive equation (Stress-strain relation)
— Strain definition

— Load and boundary conditions

— Compatibility conditions

51




Example: Cantilevered Beam Bending

* Displacement field Ay
Z( L >
P X2 VP 4 7
u(x,y)= EI(LX—7)y—@y Z .............
vxy) = 22— xy? - BB X, ¢
V)= SE V" "EI“2 "6
« Strain field
ou P ov —vP
ov. ou |vPy? P x? P X? vPy?
Ty =ox oy ~| 281 BT +I§(LX_7 ~2Er | =0
« Stress field
E |P 2P _P
E | vP
Opy = 1_V2_ (L X)y +E(L xX)y|=0
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5.6 FAILURE THEORIES
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FAILURE THEORIES

Materials fail because the stress exceed the strength
— Need to specify the exact stress type to determine failure
— Design Criteria

Material failure
— Ductile materials (metals): yield stress
— Brittle materials (ceramics): ultimate stress, fracture

Materials don’t fail by changing volume (inter-atomic distance)
Shear stress (distortion of shape) is related to material failure.

S = TS

Two Categories: stress-based and energy-based

54




STRAIN ENERGY
Force == Deformation =2 Stress == Stored Energy

Strain Energy Densityu,

1

3-D situation:y, = E(cs1g1 +6,€, + 0,E,)

Use principal stress-strain relation

E
E
1(c5 — VG, — VG, )
E 3 1 2

Strain Energy Density:U,

1 O A
= —0¢
2

Strain energy

1
= E[Gf +05 +06. —2v(o,6, + 6,0, +G,0, )]

in terms of principal stresses

95




DECOMPOSITION OF ENERGY

« Hydrostatic Stress (Volumetric stress)
— Hydrostatic pressure does not contribute to failure
— Thus, subtract the volumetric strain energy from total strain energy.
— Hydrostatic pressure: same for all directions

s _ G,+0,+0; _GXX+GW+GZZ
e —

3 3
— Strain energy density caused by o,

U = i[sﬁ +6; + 0. —2v(6,6, + 6,6, +G,0, )] _3(0=2v) o

2 E

3(1-2v)({ o,+0,+0, ’
U =— 3

2 2 2
= [01 + 05 + 05 +2(0,0, + 0,0, + 0,0, )]

56




DECOMPOSITION OF ENERGY cont.
* Distortion Energy Density

U, =y, -U,
_ 1+V 2 2 2

3E
CT+v

- GVK

Von Mises Stress

Sy :\/(01 -0,) +(0,-0;)" + (o, —01)2}

2

This energy contributes to material failure




DISTORTION ENERGY THEORY
Von Mises (1913)

— Material fails when the distortion energy reaches a certain level.
— Material yields in the tensile test when o, = 6y, and all others are zero
— Distortion energy when the material yields in tensile test

1+v

U, = Gy

3E

— In general stress status, the material yields when the distortion energy
IS greater than that of the tensile test at yielding:

1+V02 1+v62
3 ™ 3E

— Without calculating distortion energy, just compare the von Mises
stress with yield stress of the tensile test:

Oy > Oy

58




DISTORTION ENERGY THEORY cont.

— 3D stress status

2 (0,—0, Y + 6(T)2(y + 'riz + rix)

2

_ (Gxx — Oy )2 + (ny o cyzz)
Owm =

[ 2 2

— 2D (when o, = 0)

_ 2 2

[ 2 2
Gy = \/GXX +0,, —0,,0,, + 3T,
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DISTORTION ENERGY THEORY cont.

« Example: Pure Shear Problem
— 64=1=-063andoc,=0 -

— straight line through the origin at —45° TT

2

T=0,=

Oy _

J3

_ 2 2 2 2 /
6, =0, +0,6,+0; =306, =31 \

0.577c,

G3

[ 2

Safe region

>
AN
.\ (71
B ‘N \ Material failure
AN

|\J«-\:
a
Q
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MAX SHEAR STRESS THEORY
Tresca (1864)

— Material fails when the max. shear stress exceeds the shear stress in a
tensile specimen at yield.

— In tensile test, 6, = oy, 0, =65 =0: G, 03I/Ncsl

[
»

— ) 6,—O )
TY:?Y Thax = 12 3ZTY:7Y U
— Tresca theory is more conservative than the distortion energy theory
o, 4 Safe region
. Failure in max. shear stress theory
'\.\ / Safe in distortion energy theory
¢ Pure shear problem
\‘\. e G
N oy T=0,=—0, =7Y
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MAX PRINCIPAL STRESS THEORY

Rankine

— Material fails when the principal stress reaches some limit on normal
stress such as tensile yield stress or ultimate tensile stress.

— This theory frequently used for brittle materials.

o, 20y L
o 4 Distortion energy theory
| /
0/“ ;
/ '
/ /
/ / ]
o 01
| 4
‘/’
. . {‘
Principal stress theory
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SAFETY FACTOR

For design purposes it is convenient to include a chosen safety factor
N so that the stress will be safely inside the failure-stress envelope.

In many engineering applications, N = 1.1 — 1.5.
Safety factor in the distortion energy theory:

safety factor in the maximum shear stress theory:

T, Oy /2

N =

T

T T

max max
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Example: Safety Factor of a Bracket

« Stress at point A )
/
_M.r_F-/-r_1 Rod
Cax = I B I B Rigid arm —iy :>
T-r 5J2.0.1 PN
e~ =05 V2 s a
Oy =0z =Txy =Ty, = 0.0
1 0 V2
[c]=|/0 0 0
V2 0 0|
* Principal stresses A=A =2] = -AX2—A—-2)=0
([e]=All)-n=0 = _AA=2) A +1) =0,
1-x 0 2 oA =2,0,—1
O _)\ O :O 0'1:2, 0'220, 0'3:—1
V2. 0 -




Example: Safety Factor of a Bracket

0414 — 0O
e Max shear stress Tmax = — 5 3 =15

v _14_ 49333

Tmax  1-9

— Safety factor N =

* Von Mises stress oy =vV4+2+1=+7

— Safety factor N= 2 _ 28 40583

Ovm J7

* The bracket is safety under von Mises criterion, while unsafe
under max shear stress criterion
— Max shear stress criterion is more conservative
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Exercise

* The circular stepped shatft is fixed at both ends and is made
of an alloy that behaves in a linear elastic manner with
Young’'s modulus E and shear modulus G. A torque T, is
applied at the junction. (a) Determine the maximum shear
strain at location A in terms of the given parameters T, d, E,
G, K.. (b) When the yield stress of the material is Sy and the
safety factor is N, using the distortion energy theory
determine the allowable torque T, in terms of d, E, G, K,, Sy,

N. /‘
T

Y
A

2¢
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