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There are two major barriers in front of probabilistic structural design. First, uncertainties 

associated with errors in structural and aerodynamic modeling and quality of construction are not 

well characterized as statistical distributions and insufficient information may lead to large errors in 

probability calculations. Second, probabilistic design is computationally expensive because repeated 

stress calculations (typically finite element analysis) are required for updating probability calculation 

as the structure is being re-designed. Targeting these two barriers, we propose a probabilistic design 

optimization method, where the probability of failure calculation is confined to failure stresses, to 

take advantage of the fact that statistical characterization of failure stresses is required by Federal 

Aviation Administration (FAA) regulations. The stress distribution is condensed into a 

representative single value thereby eliminating the need for expensive stress distribution calculation, 

so a probabilistic optimization problem is transformed into a semi-deterministic optimization 

problem. Since the procedure starts from the deterministic optimum, a small number of iteration is 

expected, and the reliability analysis is required once in each iteration. The proposed method 

provides approximate sensitivity of failure probability with respect to design variables, which is 

essential in risk allocation. The method is demonstrated with (i) a beam problem with two failure 

modes, and (ii) ten-bar truss problem. In the ten-bar truss problem, risk is allocated between the 

truss elements, while risk is allocated between different failure modes in the beam example.  

 

Nomenclature 

 = reliability index 

c.o.v. = coefficient of variation 
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cf, cσ = coefficients of variation of the failure stress and the stress, respectively. 


*
 = relative change in characteristic stress σ

*
 corresponding to a relative change of  in stress σ 

 = relative change in stress 

F( ) = cumulative distribution function of the failure stress 

f( ) = probability density function of the failure stress 

k = correction factor for characteristic stress 

μf, μσ = mean values of the failure stress and the stress, respectively. 

s( ) = probability density function of the stress 

σf = failure stress 

σ
*
 = characteristic stress 

σp
*
 = characteristic stress for previous design 

σ = stress 

Pf
approx

 = approximate probability of failure of probabilistic design 

Pf 
p
 = probability of failure at previous design 

Pf = actual probability of failure 

Pfd = probability of failure at given deterministic design 

Wd = weight of deterministic design 

W = weight of probabilistic design 

I. Introduction 

here are two major barriers in front of probabilistic (or reliability-based) structural design. First, uncertainties 

associated with errors in structural and aerodynamic modeling and quality of construction are not well 

characterized as statistical distributions, and it has been shown that insufficient information may lead to large 

errors in probability calculations (e.g., Ben-Haim and Elishakoff
1
, Neal, et al.

2
). Due to this fact, many engineers are 

reluctant to pursue probabilistic design. The second barrier to the application of probabilistic structural optimization 

is computational expense. Probabilistic structural optimization is expensive because repeated stress calculations 

(typically FEA) are required for updating probability calculation as the structure is being re-designed. Targeting 

these two main barriers, we propose an approximate method that dispenses with expensive probabilistic stress 

calculations. In the proposed method, the probabilistic calculation is confined only to failure stress, which is often 

well characterized. 

Traditionally, reliability-based design optimization (RBDO) is performed based on a double-loop optimization 

scheme, where the outer loop is used for design optimization while the inner loop performs a sub-optimization for 

reliability analysis, using methods such as First-Order Reliability Method (FORM). Since this traditional approach is 

computationally expensive, even prohibitive for problems that require complex finite element analysis (FEA), 

alternative methods have been proposed by many researchers (e.g., Lee and Kwak
3
, Kiureghian et al.

4
, Tu et al.

5
, 

Lee et al.
6
, Qu and Haftka

7
, Du and Chen

8
 and Ba-abbad et al.

9
). These methods replace the probabilistic 

optimization with sequential deterministic optimization (often using inverse reliability measures) to reduce the 
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computational expense. However, they do not easily lend themselves to allocating risk between failure modes in a 

structure where many components can fail
11

. We note, however, that most of the computational expense is 

associated with repeated stress calculation. So we propose an approximate probabilistic design approach that reduces 

the number of expensive stress calculations. That is, we approximate the probabilistic optimization that separates the 

uncertainties which can be evaluated inexpensively and those whose effects are expensive to evaluate. We boil down 

the stress distribution to a single characteristic stress by utilizing the inverse cumulative distribution of the failure 

stress, and we propose an inexpensive approximation of that characteristic stress. We call the proposed approximate 

probabilistic design approach exact-capacity-approximate-response-distribution or ECARD. 

The remainder of the paper is organized as follows. Section II proposes an approximate method that allows 

probabilistic design based only on probability distribution of failure stresses. The application of the method to a 

beam problem and ten-bar truss problem are presented in Sections III and IV. Finally, the concluding remarks are 

listed Section V.  

II. Exact-Capacity Approximate-Response-Distribution Probabilistic Structural Design  

Structural failure, using most failure criteria, occurs when a stress, σ, at a point exceeds a failure stress, σf. Both 

the stress and the failure stress often show uncertainty due to the randomness in system parameters. In such a case, 

the safety of the system can be estimated using a probability of failure. When the failure stress is random but the 

stress σ is deterministic, the probability of failure, Pf, is defined as 

    Probf fP F      (1) 

where F is the cumulative distribution function (CDF) of the failure stress f. On the other hand, when both the 

stress and the failure stress are random, the probability of failure is calculated by integrating Eq. (1) for all possible 

values of the stress  

 ( ) ( )fP F s d  



   (2) 

where s(σ) is the probability density function (PDF) of the stress. The above integral can be evaluated using either 

analytical integration, Monte Carlo simulation (MCS), or First-/second-order reliability method (FORM/SORM). 

 It is clear from Eq. (2) that accurate estimation of probability of failure requires accurate assessments of the 

probability distributions of the stress, σ, and the failure stress, σf. For the failure stress σf, the FAA requires aircraft 

builders to perform characterization tests in order to construct a statistical model, and then to select failure 

allowables (A-basis or B-basis values) based on this model. Hence, the failure stress is often characterized 

reasonably well statistically. On the other hand, the PDF of the stress, s(σ), is poorly known, because it depends on 

the accuracy of various factors, such as structural and aerodynamic calculations, the knowledge of the state of the 

structure, damage progression, flight conditions and pilot actions.  

By using the intermediate value theorem
12

, Eq. (2) can be re-written as 

 * *( ) ( ) ( )fP F s d F   



   (3) 
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where the second equality is obtained by using the fact that the integral of s() is one. Equation (3) states that the 

effect of the poorly characterized probability density of the stress can be boiled down to a single Characteristic 

Stress, *
. This value can be obtained by (a) calculating the probability of failure from Eq. (2) with estimated s() 

and (b) using the inverse transformation of the CDF of the failure stress using 

 
* 1( )fF P   (4) 

Instead of using the estimated s(), it is equally possible to use historical data on the probability of failure of aircraft 

structural components to replace step (a). That is, given an estimate of the probability of failure, we can obtain the 

characteristic stress *
 that corresponds to this historical aircraft accident data when airplanes are designed using the 

deterministic FAA process. In addition, when the probability of failure changes from 
fP  to 

*

fP , the change in the 

characteristic stress can be represented using the relative change 
*  (see Figure 1). 

 

Figure 1. Calculation of characteristic stress *
 from the given probability of failure and CDF of the failure 

stress 

 

In this paper, we assume that the probabilistic design starts from a known deterministic optimum. The 

probabilistic design will deviate from the deterministic design by reducing the structural safety margin on some 

components while increasing it for others. We assume that the structural redesign changes the stress distribution by 

simple scaling of  to (1+) as shown in Figure 2. The changed random stress (1+) will produce a new 

probability of failure, Pf
approx

, and will have a new characteristic stress, *
(1+

*
). The key idea of the proposed 

approximate probability distribution is that the new characteristic stress can be approximated without recourse to the 

expensive probabilistic analysis. After redesign, the relation between the probability of failure and the characteristic 

stress is given as 

 
* * * * 1(1 ) or (1 ) ( )approx approx

f fP F F P           (5) 
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Figure 2. Stress distribution s(σ) before and after redesign in relation to failure-stress distribution f(σf). It is 

assumed that redesign scales the entire stress distribution. 

 

We assume that the relative change in the characteristic stress, 
*
, is proportional to the relative change in the 

stress, . That is, 

 
*
 = k  (6) 

where k is a proportionality constant that depends on the mean and coefficient of variation of the stress and the 

failure stress. It is the sensitivity of the characteristic stress change with respect to the stress change. In this paper, 

we call it the correction factor. The above assumption in linearity is reasonable when  is relatively small (as we 

will see next). Since the probabilistic design starts from the optimum deterministic design, the relative change in 

stress, , will be small in general.  

 In general, the probabilistic optimization can be viewed as allocating risk between different failure modes or 

different structural members. This procedure requires the sensitivity of failure probability with respect to design 

variables, which is missing from the standard sequential optimization and reliability assessment (SORA) method
8
. In 

the proposed approximate probabilistic optimization, this sensitivity information is approximately presented in the 

correction factor. The change in the failure probability is represented in 
*
 , while the change in design variables is 

represented in . 

 We will demonstrate the linear relationship between 
 
and 

*
 using a typical transport aircraft structure that has 

the probability of failure around 10
-7

. We consider lognormally distributed failure stress with mean value of μf = 100 

and coefficient of variation of cf = 8%, and normally distributed stress with coefficient of variation of cσ = 20%. The 

mean value of the stress is calculated as 42.49 to have a probability of failure of 10
-7

. Calculation of the mean or the 

coefficient of variation of the stress distribution using probability of failure information is given in Appendix A. 

Figure 3(a) shows the relation between  and 
*
. We can see that the linearity assumption is quite accurate over the 

range -10%  10%. Figure 3(b) shows the effect of the 
*
 approximation on the probability of failure. 
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(a) (b) 

Figure 3. (a) Comparison of approximate and exact  and * and (b) the resulting probabilities of failure for 

lognormal failure stress (with μf=100 and cf=8%) and normal stress (with μσ=42.49 and cσ=20%) 

 

Given the deterministic design as an initial design, we can perform an approximate probabilistic re-design as 

follows. 

1. Calculate the probability of failure at the given design or previous design, Pf 
p
 (using FORM or MCS) 

2. Calculate characteristic stress σ0
*
from Eq. (3), using the inverse CDF of the Pf 

p
 and the mean and c.o.v of 

the failure stress. 

3. Calculate deterministic stresses σ0 for the initial design using the mean values of all input variables. 

4. Calculate correction factor k: 

a. If using FORM: Perturb the response by some  = 0.01 and obtain failure probabilities for both 

responses. Then use inverse CDF of the probability of failures to calculate characteristic stress 

responses for both of them. Calculate 
*
 for each characteristic response using  

 
*

* 1
*p




    (7) 

Calculate the correction factor:  

 
*

k





 (8) 

b. If using MCS: Perturb the response by 1 0.05    and 2 0.05  . Then use inverse CDF of the 

probability of failures to calculate the characteristic responses. Calculate 
*
 for each response using 

Eq. (7), and compute the corresponding two correction factors k1 and k2 using Eq. (8). Using Eq. (9), 

calculate the correction factor as the average of k1 and k2 

 1
1 22

( )k k k   (9) 
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5. Perform re-design by solving the exact-capacity-approximate-response-distribution (ECARD) optimization 

given in Eq. (10), where new deterministic stresses σ are calculated using the mean values of all random 

variables.  

 
 

 
x

min x

s.t. xapprox

f fd

W

P P
 (10) 

where 

 1
p




    (11) 

 * k    (12) 

  * 1 p

fF P   (13) 

  * *1approx

fP F    
 

 (14) 

  x  , and  xp p   (15) 

6. Check weight change compared to the previous iteration and error in probability of failure estimate (Pf-Pf
*
) 

to their pre-specified tolerances for convergence, If converged in Step 8, STOP. Otherwise, GO TO Step 1 

and CONTINUE. 

 

Thus the method uses exact representation of the failure stress distribution (capacity) and an approximate 

modeling of the stress distribution (response), hence the name exact-capacity-approximate-response distribution 

(ECARD) method. The accuracy of ECARD to locate the true optimum depends on the magnitudes of errors 

involved in the approximations. For instance, Figure 3 showed that the approximation works well if the changes in 

the stresses due to redesign are small. Also, the accuracy in estimating the correction factor k affects the accuracy of 

the approximate method. If accuracy is not sufficient, the approximate method will lead to a sub-optimal design 

likely to be near to the true optimum. Then, the approximate optimum can be used as the new starting point and the 

approximate optimization can be performed in such an iterative way until the sufficient accuracy is reached. Iterative 

use of approximate method is discussed in more detail in the following section. 

III. Application of ECARD to Beam Problem 

Our first demonstration example is a cantilever beam problem, where risk is allocated between different failure 

modes.  

Problem description 

The cantilever beam design problem is analyzed by many researchers including Wu et al. 
10

, Qu et al.
7
, Ba-abbad 

et al
9
. The cantilever beam depicted in Figure 4 has two failure modes: stress failure and excessive displacement. 

The minimum weight design is sought by varying the width w and thickness t of the beam. The applied loads FX and 

FY along with the elastic modulus E and failure stress σf are random variables. All random variables are assumed 
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normally distributed with mean and coefficient of variation values as listed in Table 1. The beam width w and 

thickness t are modeled as deterministic variables.  

Table 1. The mean and coefficient of variation of the random variables. Note that all random variables follow 

normal distribution. 

Random variable Mean Coefficient of variation 

FX (lb) 500 20% 

FY (lb) 1,000 10% 

E (psi) 2.910
7
 5% 

σf (psi) 40,000 5% 

 

 

Figure 4. Cantilever beam: geometry and loading 

 
The limit-state functions corresponding to stress failure mode can be written as 

 
1 1 12 2

600 600
f Y Xg F F C R

wt w t


 
     

 
 (16) 

where C1 and R1 are the capacity and response parameters of g1. Similarly, the limit-state functions corresponding to 

displacement failure mode can be written as 

 

2 23

2 0 2 2

4 Y XF FL
g D

Ewt t w

   
      

   
 (17) 

Or, the limit-state function can be re-written in a more convenient form for our approximate method as 

 

2 2

0

2 2 23 2 24

Y X
D Ewt F F

g C R
L t w

   
       

   
 (18) 

where C2 and R2 are the capacity and response parameters of g2, L is the beam length of 100 inches and the critical 

displacement D0 is taken as 2.2535 inches. 

A. Deterministic optimization 

Deterministic optimization problem for minimum weight can be written as 

 

,

,1 2 2

2 2

0

,2 3 2 2

min

600 600
s.t. 0

0
4

w t

c f FL Y FL X

FL Y FL X

c

A wt

k S F S F
wt w t

D Ewt S F S F
k

L t w





 
   
 

   
     

   

 (19) 
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where SFL is the safety factor for loads, and kc,1 and kc,2 are knockdown factors for allowables in the first and the 

second limit-state functions, respectively. For demonstration, we take SFL=1.5 (the load safety factor used in aircraft 

design), and kc,1 and kc,2 as equal to 1.0. Usually these knockdowns are obtained from A-basis or B-basis values as 

we will discuss in our second demonstration example. However, here the use of kc,1=kc,2=1.0 led to probability of 

failure that is similar to the one used in past studies, so these values were selected. 

The deterministic optimization problem in Eq. (19) is solved using the Sequential Quadratic Programming tool 

of MATLAB (using the function fmincon). The results of deterministic optimization are listed in Table 2. The 

probabilities of failure are calculated using FORM and MCS. Using FORM, the probability of failure corresponding 

to the stress failure mode, Pf1d, is 9.30110
-5

, while the probability of failure corresponding to the displacement 

failure mode, Pf2d, is 2.65210
-3

 where the subscript „d‟ stands for the deterministic design. Note that the last column 

is the system probability of failure, PF, which is approximated as the sum of the probabilities of failure 

corresponding to the two different failure modes Pf1 and Pf2. Using MCS, the probabilities of failures are only 

slightly different. Moreover, the MCS was performed with 10
6
 samples and coefficient of variation associated with 

probability of failures for MCS is approximately 10% for Pf1d  and 2 % for Pf2d . Note that the FORM solution is 

exact for the stress probability of failure, since the limit-sate function is linear and the random variables are random. 

 

Table 2. Deterministic optimum of the beam problem 

Width 

(in) 

Thickness 

(in) 

Area 

(in
2
) 

Pf1d Pf2d PFd 

    FORM     MCS FORM    MCS   FORM MCS 

2.275 4.414 10.042 9.30110
-5

 9.82210
-5

 2.65210
-3

 2.65910
-3

 2.74510
-3

 2.75610
-3

 

 

B. Probabilistic optimization 

In this section, we perform probabilistic optimization. The probabilistic optimization problem is formulated as 

 
,

1 2

min

s.t. 0.0027

w t

F f f

A wt

P P P



  
 (20) 

 

As seen from Eq. (20) the system probability of failure, PF, is approximated as the sum of the probabilities of 

failure corresponding to the two different failure modes Pf1 and Pf2. This approximation is Ditlevsen‟s first-order 

upper bound, so the system failure probability is estimated conservatively. The probabilities of failure Pf1 and Pf2 

can be calculated using FORM or MCS. When MCS is used, system probability can be calculated without the 

approximation. However, we still use the approximation in order to have a probabilistic optimum to compare with 

the ECARD result. 

The probabilistic optimization problem is also solved using the fmincon function of MATLAB. The results of 

probabilistic optimization using FORM are listed in Table 3. MCS results in Table 4 are based on 10
6
 random 

samples for every iteration of fmincon function of MATLAB. When we compare probabilistic optimum to 

deterministic optimum, we see that weight can be reduced by 6%, while reducing the system failure probability by 
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2%. The reduction in both the weight and the probability of failure is obtained by the more efficient risk allocation 

of the probabilistic design. The deterministic design leads to smaller failure probability of failure for the stress 

failure mode than the displacement failure mode, while the situation is reversed for the probabilistic design.  

Table 3. Probabilistic optimum of the beam problem using FORM 

Width (in) Thickness (in) Area (in
2
) Pf1 Pf2 PF 

2.620 3.601 9.436 2.32610
-3

 3.73810
-4

 2.7010
-3

 

 

Table 4. Probabilistic optimum of the beam problem using MCS 

Width (in) Thickness (in) Area (in
2
) Pf1

+
 Pf2

+
 PF

+
 

2.651 3.559 9.437 2.36910
-3

 3.31010
-4

 2.7010
-3

 

 

Figure 5 shows the deterministic design, probabilistic design, probability constraint contour and objective 

function contour. Notice that the deterministic design almost satisfies the probability constraint (with 2% 

discrepancy), but it is 6% heavier than the probabilistic design. 

 

Figure 5. Deterministic, probabilistic and approximate optimum design using FORM 

 

C. Probabilistic optimization using ECARD 

Approximate probabilistic optimization problem can be formulated based on Eq. (20) as 

 
,

1 2

min

s.t. 0.0027

w t

approx approx approx

FS f f

A wt

P P P



  
 (21) 

where Pf1
approx

 and Pf2
approx

 are, respectively, approximations of Pf1 and Pf2. The approximate failure probabilities are 

calculated as 

  *

1 1 1 1 11approx

f CP F k        and    *

2 2 2 2 21approx

f CP F k      (22) 

where FC1 is the CDF of C1, FC2 is the CDF of C2. The characteristic stresses σ1
*
 and σ2

*
 are calculated as 
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  * 1

1 1 1

p

C fF P     and    * 1

2 2 2

p

C fF P   (23) 

The correction factor k1 is a function of mean and c.o.v. of the response R1 and the capacity C1 

 
Table 5 lists the designs attained in the iterations of the approximate optimization using FORM.  We see that 

after 6
th

 iteration, the approximate optimization converges to an approximate optimum close to the true optimum. 

Comparing to the true optimum, the approximate optimum is about 0.2% heavier while having the same probability 

of failure, PF. However, it is still 4% lighter than the deterministic optimum. 

Table 5. Iterations of approximate ECARD probabilistic optimization for the cantilever beam problem using 

FORM. The quantities with ‘
approx

’ correspond to their approximate values. 

Iter. w (in) t (in) Area (in
2
) PFS PFS

approx
 

0 2.275 4.414 10.042 2.75E-03 2.75E-03 

1 2.320 4.193 9.728 4.00E-03 2.70E-03 

2 2.402 3.983 9.569 3.04E-03 2.70E-03 

3 2.511 3.784 9.503 2.20E-03 2.70E-03 

4 2.525 3.749 9.464 2.59E-03 2.70E-03 

5 2.521 3.750 9.456 2.72E-03 2.70E-03 

6 2.522 3.750 9.457 2.70E-03 2.70E-03 

7 2.522 3.750 9.457 2.70E-03 2.70E-03 

 

Table 6 lists the designs attained in the iterations of the approximate optimization using MCS. We see that after 

5
th

 iteration, the approximate optimization converges to an approximate optimum close to the true optimum. 

Comparing to the true optimum, the approximate optimum is about 0.49% heavier while having the same probability 

of failure for the system as deterministic optimum design, PF.  

Table 6. Iterations of approximate ECARD probabilistic optimization for the cantilever beam problem using 

MCS. The quantities with ‘
approx

’ correspond to their approximate values. 

Iter. w (in) t (in) Area (in
2
) PFS PFS

approx
 

0 2.2752 4.4137 10.04205 0.00275 0.00275 

1 2.4454 3.9723 9.713902 0.00120 0.00270 

2 2.4888 3.8490 9.579486 0.00190 0.00270 

3 2.5223 3.7723 9.514996 0.00232 0.00270 

4 2.5080 3.7840 9.490243 0.00289 0.00270 

5 2.5006 3.8007 9.503981 0.00275 0.00270 

 

IV. Application of ECARD to Ten-bar Truss Problem 

Our second demonstration example is a ten-bar truss problem (see Figure 6). First, we present deterministic 

optimization of the problem. Then, probability of failure calculation using Monte Carlo simulations is discussed. 

Finally, probabilistic optimization is performed using ECARD, and the accuracy and efficiency of the method is 

evaluated. 
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A. Deterministic optimization 

The problem definition for the ten-bar truss problem is taken from Haftka and Gurdal
17

 (page 237). The 

minimum weight design is obtained by varying the cross section areas of the truss members, which are to subject to 

stress constraints and minimum gage constraints. The allowable stress of an element can be related to the mean 

value of the failure stress via 

 
allow dc fk   (24) 

where kdc is a knockdown factor as a function of the failure stress distribution and number of coupon tests. In this 

example, we use kdc = 0.8. 

The truss is made of aluminum with a given weight density and elasticity modulus listed in Table 7. The joints 2 

and 4 are subjected to vertical loads as shown in the figure. Note that the loads P1 and P2 equal to load safety factor 

SFL times their design values Pd1 and Pd2 as given in Eq. (25). 

 1 1FL dP S P ,   2 2FL dP S P  (25) 

 

 

Figure 6. Ten-bar truss example 

 

Table 7.Input data for truss problem 

 

Parameters Values 

P1 100 kips 

P2 100 kips 

b 360 inches 

SFL 1.5 

Pd1 66.7 kips 

Pd2 66.7 kips 

kdc 0.87 
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Density,  0.1 lb/in3 

Modulus of Elasticity, E 104 ksi 

Maximum allowable stress 25 ksi* 

Minimum gauge constraints 0.1 in2 

*for element 9, maximum allowable stress is 75 ksi 

 

The deterministic minimum weight design formulation can be written as 

 
 

 

10

1

i 1 2

min

, ,
s.t.

i
i i

A
i

i allow i

i

W L A

N P P

A



 





 



A
  (26) 

where Li, Ni, and Ai are, respectively, the length, axial force, and cross-sectional area of element i. A is 101 cross 

section area vector, σ and σallow are the stress and allowable stress in an element, respectively. Analytical solution for 

the forces in members is given in Appendix B. The results of deterministic optimization are listed in Table 8.. The 

probabilities of failure of the elements, given in the last column of Table 8 are calculated using separable Monte 

Carlo simulations
19

. Probability of failure calculation is discussed in the following section. 

Table 8.Deterministic optimum of ten-bar truss problem 

Element Area (in
2
) Weight (lb) Stress (ksi) Pfd

 
 

1 7.900 284.4 25.0 2.13E-03 

2 0.100 3.6 25.0 1.06E-02 

3 8.100 291.6 -25.0 4.80E-04 

4 3.900 140.4 -25.0 2.19E-03 

5 0.100 3.6 0.0 4.04E-04 

6 0.100 3.6 25.0 1.07E-02 

7 5.798 295.2 25.0 1.69E-03 

8 5.515 280.8 -25.0 1.89E-03 

9 3.677 187.2 37.5 5.47E-13 

10 0.141 7.2 -25.0 1.07E-02 

Total --- 1497.6 -- 4.08E-02 

(a)
 Pf values are calculated via Separable Monte Carlo simulations with sample size of 1,000,000.  

  Calculation of probabilities of failure is discussed in the next section. 

B. Probability of failure calculation using Monte Carlo simulations (MCS) 

Failure of an element is predicted to occur when the stress in the element is larger than its failure stress. That is, 

the limit-state function for an element can be written as  

  f truetrue
g     (27) 

where the subscript „true‟ stands for the true value of the relevant quantity, which is different from its calculated (or 

predicted) value due to errors. Introducing the errors, Eq. (27) can be re-written as 

     1 1f f calccalc
g e e      (28) 
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Here, ef is the error in failure prediction, eσ is the error in stress calculation. We formulated the errors such that 

positive errors correspond to a conservative decision. Hence, the sign in front of error in stress is positive, while the 

sign in front of the error in failure stress is negative. Even though our stress calculation is exact, we pretend that we 

have error, eσ, considering the analysis of a more complicated structure where the stresses are calculated using finite 

element analysis, FEA. The calculated stress can be written in a compact form as 

      1 1 2 21 , 1 , 1calc FEA P Pe P e P e      A
A  (29) 

where σFEA[ ] are calculated stresses using finite element analysis, eP1 and eP2 are errors in loads P1 and P2, and eA is 

101 error vector corresponding to 101 cross section area vector, A. The limit-state function can be arranged in 

separable form (i.e., in a form that allows the use of separable MCS) as 

  
 

 
       1 1 2 2

1
1 , 1 , 1

1
f FEA P P f calccalc calc

f

e
g e P e P e R

e

  


        


A
A  (30) 

where Rcalc stands for the calculated response. In addition to errors, variabilities are also present in the limit-state 

function in that the terms  f calc
 , P1, P2 and A are random variables that involve variabilities. These errors and 

variabilities are considered random variables. The distribution types and probabilistic parameters of errors and 

variabilities are listed in Table 9. The probabilities of failure of the elements are calculated using separable MCS. 

Separable MCS requires smaller number of simulations compared to crude MCS for the same level of accuracy. For 

detailed analysis of advantages of separable MCS, the reader is referred to Smarslok et al.
19

.  

Table 9. Error and variabilities in ten-bar truss problem 

Uncertainties Distribution type Mean Scatter 

Errors    

eσ Uniform 0.0 ± 5% 

eP1 Uniform 0.0 ± 10% 

eP2 Uniform 0.0 ± 10% 

eA (101 vector) Uniform 0.0 ± 3% 

ef Uniform 0.0 ± 20% 

Variabilities    

P1, P2 Extreme type I Pd=100 kips/SFL 10% c.o.v. 

A (101 vector) Uniform A  (101 vector) 4% bounds 

 f calc
  Lognormal 

1/kdc25 ksi  or 

1/kdc75 ksi 
8% c.o.v. 

 

After calculating the probabilities of failure of all the elements, Pf, the system failure probability, PF, is 

approximated as 

  
10

1

F fd i
i

P P


  (31) 
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Note that Eq. (31) is Ditlevsen‟s first-order upper bound, so the system failure probability is estimated 

conservatively. 

C. Probabilistic optimization 

Given a deterministic design as a starting point, the probabilistic optimization problem can be formulated such 

that the weight of the structure is minimized, while maintaining the same system probability of failure as stated in 

Eq. (32) 

 

   

10

1

10 10

1 1

min

s.t.

i
i i

A
i

f fdi i
i i

W L A

P P




 







 
 (32) 

where Pf is the element probability of failure for the probabilistic design, while Pfd is the element probability of 

failure for the deterministic design. Results of the probabilistic optimization is shown in Table 10. Overall weight 

was reduced by 6% (90.47 lbs) while maintaining the total probability of failure of the original deterministic design. 

Used a sample size of 10,000 and converged after 59 iterations.  

 

Table 10. Probabilistic optimum of ten-bar truss problem using Seperable MCS 

Elements Deterministic Areas Probabilistic Areas Deterministic Pf Probabilistic Pf 

1 7.900 7.1920 2.14E-03 5.88E-03 

2 0.100 0.3243 1.04E-02 3.07E-03 

3 8.100 7.1620 5.07E-04 8.26E-03 

4 3.900 3.7010 2.41E-03 2.15E-03 

5 0.100 0.4512 3.66E-04 3.18E-05 

6 0.100 0.3337 1.07E-02 2.14E-03 

7 5.798 5.1697 1.56E-03 1.02E-02 

8 5.515 4.9782 1.92E-03 3.75E-03 

9 3.677 3.5069 4.10E-13 4.70E-13 

10 0.141 0.4325 1.06E-02 5.46E-03 

Totals: 1497.6 Ibs 1407.13 Ibs 4.10E-02 4.10E-02 

 

D. Probabilistic optimization using ECARD 

Approximate probabilistic optimization problem can be written based on Eq. (32) as 

 

   

10

1

10 10

1 1

min

s.t.

i
i i

A
i

approx

f fd ii
i i

W L A

P P




 







 
 (33) 

where 
approx

fP  is the approximate probability of failure as a function of 
*
 as we defined earlier in Eq. (5). If 

*
 

approximation did not involve any errors, then the probabilistic design obtained from Eq. (33) would be the true 

probabilistic optimum. On the other hand, since the accuracy of 
*
 approximation is not perfect then solution of Eq. 

(33) provides a design close to the true optimum (depending, of course, on the accuracy of the approximation). The 
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true optimum, however, can be reached through iterations (semi-deterministic optimizations) by updating the 
*
 

approximation at the end of each iteration and by using the approximate probabilistic optimum design obtained at 

the end of each iteration as starting point for the next iteration. 

The number of iterations needed to reach true optimum depends on the accuracy of 
*
. The number of MCS 

performed in Step 4 of probabilistic optimization procedure as given on page 6 affects the accuracy of 
*
 

approximation. If we use a small number of MCS in Step 4, we can cut from the computational cost. However, using 

a small number of MCS reduces our confidence in the mean and the c.o.v. of the response R and thereby reduces the 

accuracy of 
*
 approximation, so the number of iterations to reach the true optimum increases. Therefore, the 

number of MCS in Step 4 is problem dependent and must be chosen accordingly. 

Table 11 shows the results of approximate probabilistic optimization and progress towards the true optimum 

shown in Table 10. For this example problem, the approximate method needs only four iterations (ECARD 

optimizations) to converge close to the true optimum. We see that at the end of the 4
th

 iteration the weight difference 

compared to the previous iteration is 0.03% and the system probability of failure is the same as deterministic system 

probability of failure. In addition, the errors in element failure probability approximations are less than 2%. Since 

that the probability of failure of the element #9 is very small, the error in its probability of failure is not taken into 

consideration. 

We have solved optimization problem in Eq. (32) in section C, we had to calculate the actual probabilities (using 

MCS) many times during the problem solution process. So the computational expense was onerous. However, our 

approximate probabilistic design requires calculation of the actual probabilities of failure of the elements five times, 

thus the computational expense is greatly reduced.  

Table 11. Results of approximate probabilistic optimization and progress towards the true optimum. 

Element Determ. Des. iter_01 iter_02 iter_03 iter_04 

AREAS (in2) 

1 7.900 7.4487 7.4787 7.4841 7.4849 

2 0.100 0.1000 0.1000 0.1000 0.1000 

3 8.100 7.0752 7.0406 7.0401 7.0402 

4 3.900 3.9382 3.9666 3.9710 3.9716 

5 0.100 0.1000 0.1000 0.1000 0.1000 

6 0.100 0.1000 0.1000 0.1000 0.1000 

7 5.798 5.0457 5.0440 5.0442 5.0441 

8 5.515 5.3538 5.3873 5.3941 5.3951 

9 3.677 3.8416 3.9657 3.9873 3.9908 

10 0.141 0.1314 0.1310 0.1309 0.1309 

Weight (lb) 1497.6 1407.16 1415.94 1417.71 1418.00 

MEAN STRESSES (ksi) 

1 16.6667 17.7656 17.7047 17.6934 17.6918 

2 16.6667 14.4790 14.0059 13.9276 13.9147 

3 -16.6667 -18.9868 -19.0693 -19.0688 -19.0684 

4 -16.6667 -16.5606 -16.4537 -16.4378 -16.4354 

5 0.0000 4.4620 4.7514 4.7913 4.7977 

6 16.6667 14.4790 14.0059 13.9276 13.9147 

7 16.6667 18.9660 18.9510 18.9472 18.9468 

8 -16.6667 -17.3456 -17.2576 -17.2391 -17.2363 

9 25.0000 24.0093 23.2747 23.1515 23.1313 

10 -16.6667 -15.5797 -15.1199 -15.0471 -15.0354 
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APPROXIMATE PF 

1 2.13E-03 5.65E-03 5.26E-03 5.21E-03 5.20E-03 

2 1.06E-02 2.16E-03 2.11E-03 2.10E-03 2.10E-03 

3 4.80E-04 7.44E-03 7.51E-03 7.51E-03 7.50E-03 

4 2.19E-03 1.97E-03 1.77E-03 1.74E-03 1.74E-03 

5 4.04E-04 4.04E-04 1.72E-03 1.86E-03 1.88E-03 

6 1.07E-02 2.17E-03 2.09E-03 2.09E-03 2.09E-03 

7 1.69E-03 1.23E-02 1.20E-02 1.20E-02 1.20E-02 

8 1.89E-03 3.59E-03 3.22E-03 3.17E-03 3.16E-03 

9 5.47E-13 3.09E-14 2.50E-15 1.67E-15 6.66E-16 

10 1.07E-02 5.17E-03 5.21E-03 5.22E-03 5.23E-03 

SYSTEM 4.08E-02 4.08E-02 4.08E-02 4.08E-02 4.08E-02 

ACTUAL PF 

1 2.13E-03 5.53E-03 5.26E-03 5.21E-03 5.20E-03 

2 1.06E-02 3.09E-03 2.25E-03 2.13E-03 2.11E-03 

3 4.80E-04 6.95E-03 7.51E-03 7.51E-03 7.50E-03 

4 2.19E-03 1.96E-03 1.77E-03 1.74E-03 1.74E-03 

5 4.04E-04 1.72E-03 1.86E-03 1.88E-03 1.88E-03 

6 1.07E-02 3.09E-03 2.23E-03 2.11E-03 2.09E-03 

7 1.69E-03 1.21E-02 1.20E-02 1.20E-02 1.20E-02 

8 1.89E-03 3.49E-03 3.22E-03 3.17E-03 3.16E-03 

9 5.47E-13 2.77E-14 2.44E-15 1.59E-15 1.48E-15 

10 1.07E-02 7.14E-03 5.50E-03 5.27E-03 5.24E-03 

SYSTEM 4.08E-02 4.51E-02 4.16E-02 4.10E-02 4.08E-02 

 

V. Concluding remarks 

An exact-capacity approximate-response-distribution (ECARD) probabilistic optimization method that dispenses 

with most of the expensive structural response calculations (typically done via finite element analysis) was proposed 

in this paper. ECARD was demonstrated with two examples. First, probabilistic optimization of a cantilever beam 

was performed, where risk was allocated between the different failure modes. Then, probabilistic optimization of a 

ten-bar truss problem was performed, where risk was allocated between truss members. From the results obtained in 

these two demonstration problems, we reached to the following conclusions. 

1. In both problems, ECARD converged to near optima of that allocated risk between failure modes much 

more efficiently than the deterministic optima. The differences between the true and approximate optima 

were due to the errors involved in probability of failure estimations, which led to errors in the derivatives of 

probabilities of failure with respect to design variables that is required in risk allocation problems.  

2. The approximate optimum required six inexpensive ECARD iterations and seven probability of failure 

calculations for the beam example to locate the approximate optimum. In ten-bar truss example, four 

ECARD iterations were required and probabilities of failure of the elements are calculated five times to 

locate the approximate optimum. This represents substantial reduction in the number of probability 

calculation required for full probabilistic optimization. 
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Appendix A. Calculation forces in members 

Analytical solution to ten-bar truss problem is given in Elishakoff et al.
18

. The member forces satisfy the 

following equilibrium and compatibility equations. Note: Values with “*” are incorrect in the reference. The correct 

expressions are: 
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