NONLINEAR ELASTIC ANALYSIS USING ABAQUS

2D Solid (Continuum) Elements

- Plane strain
 - CPE3 3-node linear
 - CPE4 4-node bilinear
 - CPE6 6-node quadratic
 - CPE8 8-node biquadratic
- Plane stress
 - CPS3 3-node linear
 - CPS4 4-node bilinear
 - CPS6 6-node quadratic
 - CPS8 8-node biquadratic
- Distributed body forces (*DLOAD)
- Surface forces (*DSLOAD)

23

Stress & Strain Measures in ABAQUS

- ABAQUS uses the updated Lagrangian formulation
- Stress measure
 - ABAQUS always calculates Cauchy (true) stress
- Total (integrated) strain
 - Default strain output (E). Accumulation of incremental strains

$$\boldsymbol{\varepsilon}^{n+1} = \Delta \boldsymbol{\mathsf{R}} \cdot \boldsymbol{\varepsilon}^n \cdot \Delta \boldsymbol{\mathsf{R}}^{\mathsf{T}} + \Delta \boldsymbol{\varepsilon}$$

- Nominal strain (NE) $\epsilon^{N} = \mathbf{V} \mathbf{1} = \sum_{i=1}^{3} (\lambda_{i} 1) \mathbf{e}_{i} \otimes \mathbf{e}_{i}$
- Logarithmic strain (LE) $\epsilon^{L} = \ln \mathbf{V} = \sum_{i=1}^{3} \ln \lambda_{i} \mathbf{e}_{i} \otimes \mathbf{e}_{i}$
- Green-Lagrange strain $\varepsilon^{\mathcal{G}} = \frac{1}{2} (\mathbf{F}^{\mathsf{T}} \mathbf{F} \mathbf{1})$

Uniaxial Extension

- X-directional extension of a plane strain solid (100%)
- Elastic incompressible material (E = 200 GPa, v = 0.499)
- Mapping relation ($\lambda_1 = 2, \lambda_2 = 0.5$)

$$\begin{array}{l} x_1 = 2X_1 \\ x_2 = 0.5X_2 \end{array} \qquad \mathcal{F} = \begin{bmatrix} 2 & 0 \\ 0 & .5 \end{bmatrix}$$

Nominal strain

$$\varepsilon^{\mathcal{N}} = \mathbf{V} - \mathbf{1} = \sum_{i=1}^{3} (\lambda_i - 1) \mathbf{e}_i \otimes \mathbf{e}_i = \begin{bmatrix} 1 & 0 \\ 0 & -.5 \end{bmatrix}$$

• Logarithmic strain

$$\varepsilon^{\mathcal{L}} = \ln \mathbf{V} = \sum_{i=1}^{3} \ln \lambda_i \mathbf{e}_i \otimes \mathbf{e}_i = \begin{bmatrix} \ln 2 & 0 \\ 0 & -\ln 2 \end{bmatrix} = \begin{bmatrix} .6931 & 0 \\ 0 & -.6931 \end{bmatrix}$$

26

25

Uniaxial Extension cont

- Show squareTension.dat
- Show postprocessing
- Force-displacement relation

Hyperelastic Material Analysis Using ABAQUS

*HEADING - Incompressible hyperelasticity (Mooney- Rivlin) Uniaxial tension *NODE,NSET=ALL 1, 2,1. 3,1.,1., 4,0.,1., 5,0.,0.,1. 6,1.,0.,1. 7,1.,1.,1. 8,0.,1.,1. *NSET,NSET=FACE1 1,2,3,4 *NSET,NSET=FACE3 1,2,5,6 *NSET,NSET=FACE4 2,3,6,7 *NSET,NSET=FACE4 2,3,6,7 *NSET,NSET=FACE6 4,1,8,5 *ELEMENT,TYPE=C3D8RH,ELSET=ONE 1,1,2,3,4,5,6,7,8 *SOLID SECTION, ELSET=ONE, MATEDIAL = MOONEY	*MATERIAL, NAME=MOONEY *HYPERELASTIC, MOONEY-RIVLIN 80., 20., *STEP, NLGEOM, INC=20 UNIAXIAL TENSION *STATIC, DIRECT 1,20. *BOUNDARY, OP=NEW FACE1,3 FACE3,2 FACE6,1 FACE4,1,1,5. *EL PRINT, F=1 S, E, *NODE PRINT, F=1 U,RF *OUTPUT, FIELD, FREQ=1 *ELEMENT OUTPUT S,E *OUTPUT, FIELD, FREQ=1 *NODE OUTPUT U,RF
MATERIAL= MOONEY	*END STEP 30

Hyperelastic Material Analysis Using ABAQUS

- Analytical solution procedure
 - Gradually increase the principal stretch λ from 1 to 6
 - Deformation gradient $\mathbf{F} = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & 1 / \sqrt{\lambda} & 0 \\ 0 & 0 & 1 / \sqrt{\lambda} \end{bmatrix}$
 - Calculate $J_{1,E}$ and $J_{2,E}$
 - Calculate 2nd P-K stress

$${\bm {\mathsf{S}}} = {\bm {\mathsf{A}}}_{\!10} {\bm {\mathsf{J}}}_{\!1,{\bm {\mathsf{E}}}} + {\bm {\mathsf{A}}}_{\!01} {\bm {\mathsf{J}}}_{\!2,{\bm {\mathsf{E}}}}$$

- Calculate Cauchy stress

$$\boldsymbol{\sigma} = \frac{1}{J} \boldsymbol{F} \cdot \boldsymbol{S} \cdot \boldsymbol{F}^{\mathsf{T}}$$

- Remove the hydrostatic component of stress

$$\sigma_{11}=\sigma_{11}-\sigma_{22}$$

Hyperelastic Material Analysis Using ABAQUS

• Comparison with analytical stress vs. numerical stress

31