CHAP 3

FEA for Nonlinear Elastic Problems

Nam-Ho Kim

Introduction

Linear systems

- Infinitesimal deformation: no significant difference between the deformed and undeformed shapes
- Stress and strain are defined in the undeformed shape
- The weak form is integrated over the undeformed shape
- Large deformation problem
 - The difference between the deformed and undeformed shapes is large enough that they cannot be treated the same
 - The definitions of stress and strain should be modified from the assumption of small deformation
 - The relation between stress and strain becomes nonlinear as deformation increases
- This chapter will focus on how to calculate the residual and tangent stiffness for a nonlinear elasticity model

Introduction

• Frame of Reference

- The weak form must be expressed based on a frame of reference
- Often initial (undeformed) geometry or current (deformed) geometry are used for the frame of reference
- proper definitions of stress and strain must be used according to the frame of reference
- Total Lagrangian Formulation: initial (undeformed) geometry as a reference
- Updated Lagrangian Formulation: current (deformed) geometry
- Two formulations are theoretically identical to express the structural equilibrium, but numerically different because different stress and strain definitions are used

Table of Contents

- 3.2. Stress and Strain Measures in Large Deformation
- 3.3. Nonlinear Elastic Analysis
- 3.4. Critical Load Analysis
- 3.5. Hyperelastic Materials
- 3.6. Finite Element Formulation for Nonlinear Elasticity
- 3.7. MATLAB Code for Hyperelastic Material Model
- 3.8. Nonlinear Elastic Analysis Using Commercial Finite Element Programs
- 3.9. Fitting Hyperelastic Material Parameters from Test Data
- 3.9. Summary
- 3.10.Exercises

3.2 Stress and Strain Measures

Goals – Stress & Strain Measures

- Definition of a nonlinear elastic problem
- Understand the deformation gradient?
- What are Lagrangian and Eulerian strains?
- What is polar decomposition and how to do it?
- How to express the deformation of an area and volume
- What are Piola-Kirchhoff and Cauchy stresses?

Mild vs. Rough Nonlinearity

- Mild Nonlinear Problems (Chap 3)
 - Continuous, history-independent nonlinear relations between stress and strain
 - Nonlinear elasticity, Geometric nonlinearity, and deformationdependent loads
- Rough Nonlinear Problems (Chap 4 & 5)
 - Equality and/or inequality constraints in constitutive relations
 - History-dependent nonlinear relations between stress and strain
 - Elastoplasticity and contact problems

What Is a Nonlinear Elastic Problem?

- Elastic (same for linear and nonlinear problems)
 - Stress-strain relation is elastic
 - Deformation disappears when the applied load is removed
 - Deformation is history-independent
 - Potential energy exists (function of deformation)
- Nonlinear
 - Stress-strain relation is nonlinear
 (D is not constant or do not exist)
 - Deformation is large
- Examples
 - Rubber material
 - Bending of a long slender member (small strain, large displacement)

Reference Frame of Stress and Strain

- Force and displacement (vector) are independent of the configuration frame in which they are defined (Reference Frame Indifference)
- Stress and strain (tensor) depend on the configuration
- Total Lagrangian or Material Stress/Strain: when the reference frame is undeformed configuration
- Updated Lagrangian or Spatial Stress/Strain: when the reference frame is deformed configuration
- Question: What is the reference frame in linear problems?

Deformation and Mapping

- Initial domain Ω_0 is deformed to Ω_x
 - We can think of this as a mapping from Ω_0 to Ω_{x}
- X: material point in Ω_0 x: material point in Ω_x
- Material point P in Ω_0 is deformed to Q in Ω_{x}

Example - Uniform Extension

Uniform extension of a cube in all three directions

 $x_1=\lambda_1X_1,\quad x_2=\lambda_2X_2,\quad x_3=\lambda_3X_3$

- Continuity requirement: $\lambda_i > 0$ Why?
- Deformation gradient: $\mathbf{F} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$
- $\lambda_1 = \lambda_2 = \lambda_3$: uniform expansion (dilatation) or contraction
- Volume change
 - Initial volume: $dV_0 = dX_1 dX_2 dX_3$
 - Deformed volume:

$$dV_{x} = dx_{1}dx_{2}dx_{3} = \lambda_{1}\lambda_{2}\lambda_{3}dX_{1}dX_{2}dX_{3} = \lambda_{1}\lambda_{2}\lambda_{3}dV_{0}$$

Example - Rigid-Body Rotation cont.

• Approach 2: using displacement gradient

$$u_{1} = x_{1} - X_{1} = X_{1}(\cos \alpha - 1) - X_{2} \sin \alpha$$

$$u_{2} = x_{2} - X_{2} = X_{1} \sin \alpha + X_{2}(\cos \alpha - 1)$$

$$u_{3} = x_{3} - X_{3} = 0$$

$$\nabla_{0} \mathbf{u} = \begin{bmatrix} \cos \alpha - 1 & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha - 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\nabla_{0} \mathbf{u}^{T} \nabla_{0} \mathbf{u} = \begin{bmatrix} 2(1 - \cos \alpha) & 0 & 0 \\ 0 & 2(1 - \cos \alpha) & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{E} = \frac{1}{2} (\nabla_{0} \mathbf{u} + \nabla_{0} \mathbf{u}^{T} + \nabla_{0} \mathbf{u}^{T} \nabla_{0} \mathbf{u}) = \mathbf{0}$$

Example - Lagrangian Strain

- + Calculate F and E for deformation in the figure
- Mapping relation in Ω_0

$$X = \sum_{I=1}^{4} N_{I}(s,t) X_{I} = \frac{3}{4}(s+1)$$
$$Y = \sum_{I=1}^{4} N_{I}(s,t) Y_{I} = \frac{1}{2}(t+1)$$

• Mapping relation in Ω_x

$$\begin{cases} x(s,t) = \sum_{I=1}^{4} N_{I}(s,t) x_{I} = 0.35(1-t) \\ y(s,t) = \sum_{I=1}^{4} N_{I}(s,t) y_{I} = s+1 \end{cases}$$

Example - Lagrangian Strain cont.

• Almansi Strain $\mathbf{b} = \mathbf{F} \cdot \mathbf{F}^{\mathsf{T}} = \begin{bmatrix} 0.49 & 0 \\ 0 & 1.78 \end{bmatrix}$ $\mathbf{e} = \frac{1}{2} (\mathbf{1} - \mathbf{b}^{-1}) = \begin{bmatrix} -0.52 & 0 \\ 0 & 0.22 \end{bmatrix}$ Compression in x₁ dir. Tension in x₂ dir. • Engineering Strain $\nabla_0 \mathbf{u} = \mathbf{F} - \mathbf{1} = \begin{bmatrix} -1 & -0.7 \\ 1.33 & -1 \end{bmatrix}$ $\epsilon = \frac{1}{2} (\nabla_0 \mathbf{u} + \nabla_0 \mathbf{u}^{\mathsf{T}}) = \begin{bmatrix} -1 & 0.32 \\ 0.32 & -1 \end{bmatrix}$ Artificial shear deform. Inconsistent normal deform.

• Engineering Strain $\varepsilon = \begin{bmatrix} \lambda - 1 & 0 & 0 \\ 0 & \lambda^{-1/2} - 1 & 0 \\ 0 & 0 & \lambda^{-1/2} - 1 \end{bmatrix}$ • Difference $E_{11} = \frac{1}{2}(\lambda^{2} - 1) \quad e_{11} = \frac{1}{2}(1 - \lambda^{-2}) \quad \varepsilon_{11} = \lambda - 1$

Polar Decomposition

- Want to separate deformation from rigid-body rotation
- Similar to principal directions of strain
- Unique decomposition of deformation gradient

 $\mathbf{F} = \mathbf{Q}\mathbf{U} = \mathbf{V}\mathbf{Q}$

- Q: orthogonal tensor (rigid-body rotation)

- U, V: right- and left-stretch tensor (symmetric)
- U and V have the same eigenvalues (principal stretches), but different eigenvectors

• And
$$\mathbf{U} = \mathbf{\Phi} \sqrt{\Lambda} \mathbf{\Phi}^{\mathsf{T}}$$

$$\sqrt{\Lambda} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$$

General Deformation

 $d\mathbf{x} = \mathbf{F}d\mathbf{X} + \mathbf{b} = \mathbf{Q}\mathbf{U}d\mathbf{X} + \mathbf{b}$

- 1. Stretch in principal directions
- 2. Rigid-body rotation
- 3. Rigid-body translation

Useful formulas $C = \sum_{i=1}^{3} \lambda_i^2 E_i \otimes E_i$ $U = \sum_{i=1}^{3} \lambda_i E_i \otimes E_i$ $Q = \sum_{i=1}^{3} e_i \otimes E_i$ $b = \sum_{i=1}^{3} \lambda_i^2 e_i \otimes e_i$ $V = \sum_{i=1}^{3} \lambda_i e_i \otimes e_i$ $F = \sum_{i=1}^{3} \lambda_i e_i \otimes E_i$

Example - Polar Decomposition cont.
• In
$$E_1 - E_2$$
 coordinates $C' = \Lambda = \begin{bmatrix} 3 & 0 \\ 0 & 1/3 \end{bmatrix}$
• Principal Direction Matrix $\Phi = [E_1 \quad E_2] = \begin{bmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{bmatrix}$
• Deformation tensor in principal directions
 $\Lambda = \Phi^T \cdot C \cdot \Phi$
• Stretch tensor
 $\sqrt{\Lambda} = \begin{bmatrix} \sqrt{3} & 0 \\ 0 & 1/\sqrt{3} \end{bmatrix}$
 $U = \Phi \cdot \sqrt{\Lambda} \cdot \Phi^T = \begin{bmatrix} \sqrt{3}/2 & 1/2 \\ 1/2 & 5/2\sqrt{3} \end{bmatrix}$

Example - Polar Decomposition cont.
• How U deforms a square?

$$U \cdot \begin{cases} 1\\0 \end{cases} = \begin{cases} \sqrt{3}/2\\1/2 \end{cases}, \quad U \cdot \begin{cases} 0\\1 \end{cases} = \begin{cases} 1/2\\5/2\sqrt{3} \end{cases}$$
* Rotational Tensor

$$\mathbf{Q} = \mathbf{F} \cdot \mathbf{U}^{-1} = \begin{bmatrix} \sqrt{3}/2 & 1/2\\-1/2 & \sqrt{3}/2 \end{bmatrix}$$
• Rotational Tensor

$$\mathbf{Q} = \mathbf{F} \cdot \mathbf{U}^{-1} = \begin{bmatrix} \sqrt{3}/2 & 1/2\\-1/2 & \sqrt{3}/2 \end{bmatrix}$$

$$\mathbf{Q} \cdot \begin{cases} \sqrt{3}/2\\1/2 \end{cases} = \begin{cases} 1\\0 \end{cases}, \quad \mathbf{Q} \cdot \begin{cases} 1/2\\5/2\sqrt{3} \end{cases} = \begin{cases} 1.15\\1 \end{cases}$$
- 30° clockwise rotation

$$\mathbf{V} = \mathbf{F} \cdot \mathbf{Q}^{T} = \begin{bmatrix} 5\sqrt{3}/6 & 1/2\\1/2 & \sqrt{3}/2 \end{bmatrix}$$
32

Deformation of a Volume

$$\begin{aligned} \mathbf{x}_1 &= \lambda_1 \mathbf{X}_1 & \lambda_1 &= \mathbf{L} / \mathbf{L}_0 \\ \mathbf{x}_2 &= \lambda_2 \mathbf{X}_2 & \lambda_2 &= \mathbf{h} / \mathbf{h}_0 \\ \mathbf{x}_3 &= \lambda_3 \mathbf{X}_3 & \lambda_3 &= \mathbf{h} / \mathbf{h}_0 \end{aligned}$$

Deformation gradient

$$\mathbf{F} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} \qquad \qquad \mathbf{J} = \det \mathbf{F} = \lambda_1 \lambda_2 \lambda_3 \\ = \frac{L}{L_0} \left(\frac{h}{h_0}\right)^2 = \frac{LA}{L_0 A_0}$$

Constant volume

$$J = 1 \implies h = h_0 \sqrt{\frac{L_0}{L}} \quad A = A_0 \frac{L_0}{L}$$

36

35

 h_0

 h_0

Results from Continuum Mechanics

$$\begin{split} \mathbf{e}_{ijk} \left| \mathbf{F} \right| &= \mathbf{e}_{rst} \frac{\partial \mathbf{x}_{r}}{\partial \mathbf{X}_{i}} \frac{\partial \mathbf{x}_{s}}{\partial \mathbf{X}_{j}} \frac{\partial \mathbf{x}_{t}}{\partial \mathbf{X}_{k}} \\ \mathbf{e}_{rst} \left| \mathbf{F}^{-1} \right| &= \mathbf{e}_{ijk} \frac{\partial \mathbf{X}_{i}}{\partial \mathbf{x}_{r}} \frac{\partial \mathbf{X}_{j}}{\partial \mathbf{x}_{s}} \frac{\partial \mathbf{X}_{k}}{\partial \mathbf{x}_{t}} \end{split}$$

Use the second relation: $\frac{\partial X_{i}}{\partial x_{r}} N_{i} dS_{0} = e_{ijk} \frac{\partial X_{i}}{\partial x_{r}} \frac{\partial X_{j}}{\partial x_{s}} \frac{\partial X_{k}}{\partial x_{t}} dx_{s}^{1} dx_{t}^{2} = e_{rst} |\mathbf{F}|^{-1} dx_{s}^{1} dx_{t}^{2}$ $\mathbf{n} dS_{x} = \mathbf{J} \mathbf{F}^{-T} \cdot \mathbf{N} dS_{0} \qquad \mathbf{n} \| \mathbf{F}^{-T} \cdot \mathbf{N} \implies \mathbf{n} = \frac{\mathbf{F}^{-T} \cdot \mathbf{N}}{\|\mathbf{F}^{-T} \cdot \mathbf{N}\|}$

$$dS_{x} = J \| \mathbf{F}(\mathbf{x})^{-T} \mathbf{N}(\mathbf{X}) \| dS_{0}$$

- Stress and strain (tensor) depend on the configuration
- Cauchy (True) Stress: Force acts on the deformed config.
 - Stress vector at Ω_x :

$$\mathbf{t} = \lim_{\Delta S_x \to 0} \frac{\Delta \mathbf{f}}{\Delta S_x} = \sigma \mathbf{n}$$

Cauchy Stress, sym

- Cauchy stress refers to the current deformed configuration as a reference for both area and force (true stress)

Undeformed configuration Deformed configuration

Stress Measures cont.

• The same force, but different area (undeformed area)

$$\mathbf{T} = \lim_{\Delta S_0 \to 0} \frac{\Delta \mathbf{f}}{\Delta S_0} = \mathbf{P}^{\mathsf{T}} \mathbf{N}$$

First Piola-Kirchhoff Stress Not symmetric

- P refers to the force in the deformed configuration and the area in the undeformed configuration
- Make both force and area to refer to undeformed config.

$$d\mathbf{f} = \sigma \mathbf{n} dS_x = \mathbf{P}^T \mathbf{N} dS_0 \qquad \qquad \mathbf{n} dS_x = \mathbf{J} \mathbf{F}^{-T} \cdot \mathbf{N} dS_0$$

 $d\mathbf{f} = \sigma(\mathbf{J}\mathbf{F}^{-\mathsf{T}}\mathbf{N}dS_0) = \mathbf{P}^{\mathsf{T}}\mathbf{N}dS_0$

 $\mathsf{P} = \mathsf{J}\mathsf{F}^{-1}\sigma$

: Relation between σ and P

Stress Measures cont.

Example

Integration can be done in Ω_0

- Observation
 - For linear problems (small deformation): $\boldsymbol{\epsilon} \approx \boldsymbol{E} \approx \boldsymbol{e}$
 - For linear problems (small deformation): $\sigma\approx\tau\approx\textbf{P}\approx\textbf{S}$
 - S and E are conjugate in energy
 - S and E are invariant in rigid-body motion

Summary

- Nonlinear elastic problems use different measures of stress and strain due to changes in the reference frame
- Lagrangian strain is independent of rigid-body rotation, but engineering strain is not
- Any deformation can be uniquely decomposed into rigidbody rotation and stretch
- The determinant of deformation gradient is related to the volume change, while the deformation gradient and surface normal are related to the area change
- Four different stress measures are defined based on the reference frame.
- All stress and strain measures are identical when the deformation is infinitesimal

3.3 Nonlinear Elastic Analysis

45

Goals

- Understanding the principle of minimum potential energy
 - Understand the concept of variation
- Understanding St. Venant-Kirchhoff material
- How to obtain the governing equation for nonlinear elastic problem
- What is the total Lagrangian formulation?
- What is the updated Lagrangian formulation?
- Understanding the linearization process

Numerical Methods for Nonlinear Elastic Problem We will obtain the variational equation using the principle of minimum potential energy Only possible for elastic materials (potential exists) The N-R method will be used (need Jacobian matrix) Total Lagrangian (material) formulation uses the undeformed configuration as a reference, while the updated Lagrangian (spatial) uses the current configuration as a reference The total and updated Lagrangian formulations are mathematically equivalent but have different aspects in computation

Total Lagrangian Formulation cont.

- In TL, the undeformed configuration is the reference
- 2nd P-K stress (S) and G-L strain (E) are the natural choice
- In elastic material, strain energy density W exists, such that

 $\text{stress} = \frac{\partial W}{\partial \text{strain}}$

We need to express W in terms of E

49

Strain Energy Density and Stress Measures

- By differentiating strain energy density with respect to proper strains, we can obtain stresses
- When W(E) is given

$${\sf S}=rac{\partial {\sf W}({\sf E})}{\partial {\sf E}}$$

Second P-K stress

• When W(F) is given

$$\frac{\partial W}{\partial F} = \frac{\partial W}{\partial E} : \frac{\partial E}{\partial F} = F \cdot \frac{\partial W}{\partial E} = F \cdot S = P^{\mathsf{T}} \qquad \text{First P-K stress}$$

• It is difficult to have $W(\epsilon)$ because ϵ depends on rigidbody rotation. Instead, we will use **invariants** in Section 3.5

St. Venant-Kirchhoff Material cont.

- Stress calculation
 - differentiate strain energy density

$$S = \frac{\partial W(E)}{\partial E} = D : E = \lambda tr(E)1 + 2\mu E$$

Limited to small strain but large rotation

$$\mathsf{E} = \frac{1}{2}(\mathsf{F}^{\mathsf{T}}\mathsf{F} - 1) = \frac{1}{2}(\mathsf{U}^{\mathsf{T}}\mathsf{Q}^{\mathsf{T}}\mathsf{Q}\mathsf{u} - 1) = \frac{1}{2}(\mathsf{U}^{2} - 1)$$

- Rigid-body rotation is removed and only the stretch tensor contributes to the strain
- Can show $S = \frac{\partial W}{\partial E} = 2 \frac{\partial W}{\partial C}$ L Deformation tensor

Example - Simple Shear Problem

Kinematically admissible space

 $\mathbb{Z} = \left\{ \overline{\boldsymbol{u}} \, \middle| \, \overline{\boldsymbol{u}} \in [\boldsymbol{H}^1(\Omega)]^3, \ \overline{\boldsymbol{u}} \, \middle|_{\Gamma^h} = 0 \right\}$

Variational Formulation

• We want to minimize the potential energy (equilibrium) Π^{int} : stored internal energy

 Π^{ext} potential energy of applied loads

$$\Pi(\mathbf{u}) = \Pi^{\text{int}}(\mathbf{u}) + \Pi^{\text{ext}}(\mathbf{u})$$
$$= \iint_{\Omega_0} \mathbf{W}(\mathbf{E}) d\Omega - \iint_{\Omega_0} \mathbf{u}^{\mathsf{T}} \mathbf{f}^{\mathsf{b}} d\Omega - \int_{\Gamma_0^{\mathsf{s}}} \mathbf{u}^{\mathsf{T}} \mathbf{t} \ d\Gamma$$

- Want to find $\mathbf{u} \in \mathbb{V}$ that minimizes the potential energy
 - Perturb \boldsymbol{u} in the direction of $\boldsymbol{\bar{u}} \in \mathbb{Z}$ proportional to τ

$$\mathbf{u}_{\tau} = \mathbf{u} + \tau \overline{\mathbf{u}}$$

- If u minimizes the potential, $\Pi(u)$ must be smaller than $\Pi(u_{\tau})$ for all possible \bar{u}

Example - Linear Spring

$$-$$

- Potential energy: $\Pi(u) = \frac{1}{2}k \cdot u^2 f \cdot u$
- Perturbation: $\Pi(\mathbf{u} + \tau \overline{\mathbf{u}}) = \frac{1}{2}\mathbf{k} \cdot (\mathbf{u} + \tau \overline{\mathbf{u}})^2 \mathbf{f} \cdot (\mathbf{u} + \tau \overline{\mathbf{u}})$
- Differentiation: $\frac{d}{d\tau} \left[\Pi (\mathbf{u} + \tau \overline{\mathbf{u}}) \right] = \mathbf{k} \cdot (\mathbf{u} + \tau \overline{\mathbf{u}}) \cdot \overline{\mathbf{u}} \mathbf{f} \cdot \overline{\mathbf{u}}$
- Evaluate at original state:

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \Big[\Pi (\mathbf{u} + \tau \overline{\mathbf{u}}) \Big] \Big|_{\tau=0} = \mathbf{k} \cdot \mathbf{u} \cdot \overline{\mathbf{u}} - \mathbf{f} \cdot \overline{\mathbf{u}} = \mathbf{0}$$

Variation is similar to differentiation !!!

Variational Formulation cont.

• How to express strain variation

$$\begin{aligned} \mathbf{E}(\mathbf{u}) &= \frac{1}{2}(\mathbf{C} - \mathbf{1}) = \frac{1}{2} \left(\nabla_0 \mathbf{u} + \nabla_0 \mathbf{u}^T + \nabla_0 \mathbf{u}^T \nabla_0 \mathbf{u} \right) \\ \overline{\mathbf{E}}(\mathbf{u}, \overline{\mathbf{u}}) &= \frac{d}{d\tau} \mathbf{E}(\mathbf{u} + \tau \overline{\mathbf{u}}) \Big|_{\tau=0} \\ &= \frac{1}{2} \left(\nabla_0 \overline{\mathbf{u}} + \nabla_0 \overline{\mathbf{u}}^T + \nabla_0 \overline{\mathbf{u}}^T \nabla_0 \mathbf{u} + \nabla_0 \mathbf{u}^T \nabla_0 \overline{\mathbf{u}} \right) \\ &= \frac{1}{2} \left((\mathbf{1} + \nabla_0 \mathbf{u}^T) \nabla_0 \overline{\mathbf{u}} + \nabla_0 \overline{\mathbf{u}}^T (\mathbf{1} + \nabla_0 \mathbf{u}) \right) \\ &= \frac{1}{2} \left(\mathbf{F}^T \nabla_0 \overline{\mathbf{u}} + \nabla_0 \overline{\mathbf{u}}^T \mathbf{F} \right) \\ \overline{\mathbf{E}}(\mathbf{u}, \overline{\mathbf{u}}) &= sym(\nabla_0 \overline{\mathbf{u}}^T \mathbf{F}) \end{aligned}$$

Note: E(u) is nonlinear, but $\overline{E}(u, \overline{u})$ is linear

- Also linear in terms of **ū**
- Nonlinear in terms of u because displacement-strain relation is nonlinear

61

Linearization (Increment)

- Linearization process is similar to variation and/or differentiation
 - First-order Taylor series expansion
 - Essential part of Newton-Raphson method
- Let $f(\mathbf{x}^{k+1}) = f(\mathbf{x}^k + \Delta \mathbf{u}^k)$, where we know \mathbf{x}^k and want to calculate $\Lambda \mathbf{u}^{k}$

$$f(\mathbf{x}^{k+1}) = f(\mathbf{x}^k) + \frac{df(\mathbf{x})}{d\mathbf{x}} \cdot \Delta \mathbf{u}^k + H.O.T.$$

The first-order derivative is indeed linearization of f(x)

$$L[f] = \frac{d}{d\omega} f(\mathbf{x} + \omega \Delta \mathbf{u}) \bigg|_{\omega=0} = \frac{\partial f}{\partial \mathbf{x}} \cdot \Delta \mathbf{u}$$
 Linearization
$$\delta f = \overline{f} = \frac{d}{d\tau} f(\mathbf{x} + \tau \overline{\mathbf{u}}) \bigg|_{\omega=0} = \frac{\partial f}{\partial \mathbf{x}} \cdot \overline{\mathbf{u}}$$
 Variation

 $|_{\tau=0}$

Linearization of Residual

- We are still in continuum domain (not discretized yet)
- Residual $R(\mathbf{u}) = a(\mathbf{u}, \overline{\mathbf{u}}) \ell(\overline{\mathbf{u}})$
- We want to linearize $R(\boldsymbol{u})$ in the direction of $\Delta \boldsymbol{u}$

- First, assume that \bm{u} is perturbed in the direction of $\Delta \bm{u}$ using a variable $\tau.$ Then linearization becomes

$$L[R(\mathbf{u})] = \frac{\partial R(\mathbf{u} + \tau \Delta \mathbf{u})}{\partial \tau} \bigg|_{\tau=0} = \left[\frac{\partial R}{\partial \mathbf{u}}\right]^{\mathsf{T}} \Delta \mathbf{u}$$

- R(u) is nonlinear w.r.t. u, but L[R(u)] is linear w.r.t. Δu
- Iteration k did not converged, and we want to make the residual at iteration k+1 zero

63

$$\mathsf{R}(\mathbf{u}^{k+1}) \approx \left[\frac{\partial \mathsf{R}(\mathbf{u}^{k})}{\partial \mathbf{u}}\right]^{\mathsf{T}} \Delta \mathbf{u}^{k} + \mathsf{R}(\mathbf{u}^{k}) = \mathbf{0}$$

Newton-Raphson Iteration by Linearization

Linearization cont.

Linearization of energy form

$$\mathsf{L}[\mathsf{a}(\mathsf{u},\overline{\mathsf{u}})] = \mathsf{L}\Big[\iint_{\circ_{\Omega}} \mathsf{S}:\overline{\mathsf{E}}\,\mathsf{d}\Omega\,\Big] = \iint_{\circ_{\Omega}}[\Delta\mathsf{S}:\overline{\mathsf{E}}+\mathsf{S}:\Delta\overline{\mathsf{E}}]\mathsf{d}\Omega$$

- Note that the domain is fixed (undeformed reference)
- Need to express in terms of displacement increment $\Delta \boldsymbol{u}$
- Stress increment (St. Venant-Kirchhoff material)

$$\Delta \mathbf{S} = \frac{\partial \mathbf{S}}{\partial \mathbf{E}} : \Delta \mathbf{E} = \mathbf{D} : \Delta \mathbf{E}$$

• Strain increment (Green-Lagrange strain)

$$\Delta \mathbf{E} = \frac{1}{2} (\Delta \mathbf{F}^{\mathsf{T}} \mathbf{F} + \mathbf{F}^{\mathsf{T}} \Delta \mathbf{F})$$

$$\Delta \mathbf{F} = \Delta \left(\frac{\partial \mathbf{x}}{\partial \mathbf{X}} \right) = \Delta \left(\frac{\partial (\mathbf{X} + \mathbf{u})}{\partial \mathbf{X}} \right) = \frac{\partial \Delta \mathbf{u}}{\partial \mathbf{X}} = \nabla_0 \Delta \mathbf{u}$$

Linearization cont.

- Strain increment $\Delta \mathbf{E} = \frac{1}{2} (\Delta \mathbf{F}^{\mathsf{T}} \mathbf{F} + \mathbf{F}^{\mathsf{T}} \Delta \mathbf{F})$ $= \frac{1}{2} (\nabla_0 \Delta \mathbf{u}^{\mathsf{T}} \mathbf{F} + \mathbf{F}^{\mathsf{T}} \nabla_0 \Delta \mathbf{u})$ $= sym(\nabla_0 \Delta \mathbf{u}^{\mathsf{T}} \mathbf{F}) \qquad \text{III Linear w.r.t. } \Delta \mathbf{u}$
- Inc. strain variation $\Delta \overline{\mathbf{E}} = \Delta [sym(\nabla_0 \overline{\mathbf{u}}^{\mathsf{T}} \mathbf{F})]$ $= sym(\nabla_0 \overline{\mathbf{u}}^{\mathsf{T}} \Delta \mathbf{F})$ $= sym(\nabla_0 \overline{\mathbf{u}}^{\mathsf{T}} \nabla_0 \Delta \mathbf{u}) \qquad \text{iii Linear w.r.t. } \Delta \mathbf{u}$
- Linearized energy form

$$L[a(\mathbf{u},\overline{\mathbf{u}})] = \iint_{o_{\Omega}} [\overline{\mathbf{E}} : \mathbf{D} : \Delta \mathbf{E} + \mathbf{S} : \Delta \overline{\mathbf{E}}] d\Omega \equiv a^{*}(\mathbf{u}; \Delta \mathbf{u}, \overline{\mathbf{u}})$$

- Implicitly depends on u, but bilinear w.r.t. Δu and \bar{u}

- First term: tangent stiffness
- Second term: initial stiffness

Example - Uniaxial Bar

Linearization

$$\begin{split} \Delta S_{11} &= E \Delta E_{11} = E(1 + u_2) \Delta u_2 \qquad \Delta \overline{E}_{11} = \overline{u}_2 \Delta u_2 \\ a^*(u; \Delta u, \overline{u}) &= \int_0^{L_0} \left(\overline{E}_{11} \cdot E \cdot \Delta E_{11} + S_{11} \cdot \Delta \overline{E}_{11} \right) A \, dX \\ &= E A L_0 (1 + u_2)^2 \overline{u}_2 \Delta u_2 + S_{11} A L_0 \overline{u}_2 \Delta u_2 \end{split}$$

• N-R iteration

$$\begin{split} & [\mathsf{E}(1+u_2^k)^2 + S_{11}^k]\mathsf{AL}_0 \Delta u_2^k = \mathsf{F} - S_{11}^k (1+u_2^k)\mathsf{AL}_0 \\ & u_2^{k+1} = u_s^k + \Delta u_2^k \end{split}$$

69

Example – Uniaxial Bar

(a) with initial stiffness								
Iteration	и	Strain	Stress	conv				
0	0.0000	0.0000	0.0000	9.999E-01				
1	0.5000	0.6250	125.00	7.655E-01				
2	0.3478	0.4083	81.664	1.014E-02				
3	0.3252	0.3781	75.616	4.236E-06				
(b) witho	(b) without initial stiffness							
Iteration	и	Strain	Stress	conv				
0	0.0000	0.0000	0.0000	9.999E-01				
1	0.5000	0.6250	125.00	7.655E-01				
2	0.3056	0.3252	70.448	6.442E-03				
3	0.3291	0.3833	76.651	3.524E-04				
4	0.3238	0.3762	75.242	1.568E-05				
5	0.3250	0.3770	75.541	7.314E-07				

Updated Lagrangian Formulation

- The current configuration is the reference frame
 - Remember it is unknown until we solve the problem
 - How are we going to integrate if we don't know integral domain?

• What stress and strain should be used?

- For stress, we can use Cauchy stress ($\sigma)$
- For strain, engineering strain is a pair of Cauchy stress
- But, it must be defined in the current configuration

$$\boldsymbol{\varepsilon} = \frac{1}{2} \left(\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x}}^{\mathsf{T}} + \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x}} \right) = sym(\nabla_{\boldsymbol{x}} \boldsymbol{u})$$

71

Variational Equation in UL

• Instead of deriving a new variational equation, we will convert from TL equation

$$\sigma = \frac{1}{J} \mathbf{F} \cdot \mathbf{S} \cdot \mathbf{F}^{\mathsf{T}} \qquad \overline{\mathbf{E}} = \frac{1}{2} \left(\frac{\partial \overline{\mathbf{u}}}{\partial \mathbf{X}}^{\mathsf{T}} \mathbf{F} + \mathbf{F}^{\mathsf{T}} \frac{\partial \overline{\mathbf{u}}}{\partial \mathbf{X}} \right)$$

$$\Rightarrow \mathbf{S} = \mathbf{J} \mathbf{F}^{-1} \cdot \boldsymbol{\sigma} \cdot \mathbf{F}^{-\mathsf{T}} \qquad = \frac{1}{2} \mathbf{F}^{\mathsf{T}} \left(\mathbf{F}^{-\mathsf{T}} \frac{\partial \overline{\mathbf{u}}}{\partial \mathbf{X}}^{\mathsf{T}} + \frac{\partial \overline{\mathbf{u}}}{\partial \mathbf{X}} \mathbf{F}^{-1} \right) \mathbf{F}$$

$$= \frac{1}{2} \mathbf{F}^{\mathsf{T}} \left(\frac{\partial \mathbf{X}}{\partial \mathbf{x}}^{\mathsf{T}} \frac{\partial \overline{\mathbf{u}}}{\partial \mathbf{X}}^{\mathsf{T}} + \frac{\partial \overline{\mathbf{u}}}{\partial \mathbf{X}} \frac{\partial \mathbf{X}}{\partial \mathbf{x}} \right) \mathbf{F}$$
Similarly
$$\Delta \mathbf{E} = \mathbf{F}^{\mathsf{T}} \cdot \Delta \epsilon \cdot \mathbf{F}$$

$$\Delta \epsilon = \frac{1}{2} \left(\frac{\partial \Delta \mathbf{u}}{\partial \mathbf{x}}^{\mathsf{T}} + \frac{\partial \Delta \mathbf{u}}{\partial \mathbf{x}} \right)$$

$$= \mathbf{F}^{\mathsf{T}} \cdot \overline{\epsilon} \cdot \mathbf{F}$$

$$= \mathbf{F}^{\mathsf{T}} \cdot \overline{\epsilon} \cdot \mathbf{F}$$

Linearization of UL

- Linearization of $a_x(u, \overline{u})$ will be challenging because we don't know the current configuration (it is function of **u**)
- Similar to the energy form, we can convert the linearized energy form of TL
- Remember $a^{*}(\mathbf{u}; \Delta \mathbf{u}, \overline{\mathbf{u}}) = \iint_{\Omega} [\overline{\mathbf{E}} : \mathbf{D} : \Delta \mathbf{E} + \mathbf{S} : \Delta \overline{\mathbf{E}}] d^{0}\Omega$
- Initial stiffness term

$$\begin{split} \mathbf{S} : \Delta \overline{\mathbf{E}} &= \mathbf{J} (\mathbf{F}^{-1} \mathbf{\sigma} \mathbf{F}^{-\mathsf{T}}) : \frac{1}{2} \left(\frac{\partial \overline{\mathbf{u}}}{\partial \mathbf{X}}^{\mathsf{T}} \frac{\partial \Delta \mathbf{u}}{\partial \mathbf{X}} + \frac{\partial \Delta \mathbf{u}}{\partial \mathbf{X}}^{\mathsf{T}} \frac{\partial \overline{\mathbf{u}}}{\partial \mathbf{X}} \right) \\ &= \mathbf{J} \mathbf{F}_{ik}^{-1} \sigma_{kl} \mathbf{F}_{jl}^{-1} \frac{1}{2} \left(\frac{\partial \overline{\mathbf{u}}_{m}}{\partial \mathbf{X}_{i}} \frac{\partial \Delta \mathbf{u}_{m}}{\partial \mathbf{X}_{j}} + \frac{\partial \Delta \mathbf{u}_{m}}{\partial \mathbf{X}_{i}} \frac{\partial \overline{\mathbf{u}}_{m}}{\partial \mathbf{X}_{j}} \right) \\ &\equiv \mathbf{J} \sigma_{kl} \frac{1}{2} \left(\frac{\partial \overline{\mathbf{u}}_{m}}{\partial \mathbf{x}_{k}} \frac{\partial \Delta \mathbf{u}_{m}}{\partial \mathbf{x}_{l}} + \frac{\partial \Delta \mathbf{u}_{m}}{\partial \mathbf{x}_{k}} \frac{\partial \overline{\mathbf{u}}_{m}}{\partial \mathbf{x}_{l}} \right) \longrightarrow \eta_{kl} (\Delta \mathbf{u}, \overline{\mathbf{u}}) \end{split}$$

Spatial Constitutive Tensor

For St. Venant-Kirchhoff material

 $\mathbf{D} = \lambda (\mathbf{1} \otimes \mathbf{1}) + 2\mu \mathbf{I} \qquad \mathbf{D}_{rsmn} = \lambda \delta_{rs} \delta_{mn} + \mu (\delta_{rm} \delta_{sn} + \delta_{rn} \delta_{sm})$

It is possible to show

$$c_{ijkl} = \frac{1}{J} \Big[\lambda b_{ij} b_{kl} + \mu (b_{ik} b_{jl} + b_{il} b_{jk}) \Big].$$

- Observation
 - D (material) is constant, but c (spatial) is not
 - S = D : E, $\sigma \neq c : \epsilon$

Linearization of UL cont.

 From equivalence, the energy form is linearized in TL and converted to UL

$$L[a(\mathbf{u},\overline{\mathbf{u}})] = \iint_{\Omega_0} [\overline{\epsilon} : \mathbf{c} : \Delta \epsilon + \sigma : \eta] \mathbf{J} d\Omega$$

$$a^{\star}(\mathbf{u};\Delta\mathbf{u},\overline{\mathbf{u}}) = \iint_{\Omega_{\star}} [\overline{\mathbf{\varepsilon}}:\mathbf{c}:\Delta\mathbf{\varepsilon}+\mathbf{\sigma}:\mathbf{\eta}]d\Omega$$

• N-R Iteration

$$\boldsymbol{\alpha^{*}(^{n}\boldsymbol{u}^{k};\Delta\boldsymbol{u}^{k},\overline{\boldsymbol{u}})} = \ell(\overline{\boldsymbol{u}}) - \boldsymbol{\alpha}(^{n}\boldsymbol{u}^{k},\overline{\boldsymbol{u}}), \quad \forall \overline{\boldsymbol{u}} \in \mathbb{Z}$$

- Observations
 - Two formulations are theoretically identical with different expression
 - Numerical implementation will be different
 - Different constitutive relation

Example - Uniaxial Bar
• Kinematics

$$\frac{du}{dx} = \frac{u_2}{1 + u_2}, \quad \frac{d\overline{u}}{dx} = \frac{\overline{u_2}}{1 + u_2}$$
• Deformation gradient: $F_{11} = \frac{dx}{dX} = 1 + u_2, \quad J = 1 + u_2$
• Cauchy stress: $\sigma_{11} = \frac{1}{J}F_{11}S_{11}F_{11} = E(u_2 + \frac{1}{2}u_2^2)(1 + u_2)$
• Strain variation: $\varepsilon_{11}(\overline{u}) = F_{11}^{-T}\overline{E}_{11}F_{11}^{-1} = \frac{\overline{u_2}}{1 + u_2}$
• Energy & load forms: $a(u,\overline{u}) = \int_0^L \sigma_{11}\varepsilon_{11}(\overline{u})Adx = \sigma_{11}A\overline{u_2} \qquad \ell(\overline{u}) = \overline{u_2}F$
• Residual: $R = \overline{u_2}(\sigma_{11}A - F) = 0, \quad \forall \overline{u_2}$

Example – Uniaxial Bar										
• Spatial constitutive relation: $c_{1111} = \frac{1}{J}F_{11}F_{11}F_{11}F_{11}E = (1 + u_2)^3E$										
• Linearization: $\int_{0}^{L} \varepsilon_{11}(\overline{u}) c_{1111} \varepsilon_{11}(\Delta u) A dx = EA(1 + u_2)^2 \overline{u}_2 \Delta u_2$										
	$\int_{0}^{L} \sigma_{11} \eta_{11}(\Delta u, \overline{u}) A dx = \frac{\sigma_{11}A}{1+u_2} \overline{u}_2 \Delta u_2$									
$a^{*}(\mathbf{u}; \Delta \mathbf{u}, \overline{\mathbf{u}}) = \int_{0}^{L} \left(\epsilon_{11}(\overline{\mathbf{u}}) c_{1111} \epsilon_{11}(\Delta \mathbf{u}) + \sigma_{11} \eta(\Delta \mathbf{u}, \overline{\mathbf{u}}) \right) A d\mathbf{x}$										
$=EA(1+u_2)^2\overline{u}_2\Deltau_2+\frac{\sigma_{11}}{1+u_2}A\overline{u}_2\Deltau_2$										
-	Iteration	U	Strain	Stress	conv					
-	0	0.0000	0.0000	0.000	9.999E-01					
	1	0.5000	0.3333	187.500	7.655E-01					
2 0.3478 0.2581 110.068 1.014E-02										
	3 0.3252 0.2454 100.206 4.236E-06									

Section 3.5 Hyperelastic Material Model

Goals

- Understand the definition of hyperelastic material
- Understand strain energy density function and how to use it to obtain stress
- Understand the role of invariants in hyperelasticity
- Understand how to impose incompressibility
- Understand mixed formulation and perturbed Lagrangian formulation
- Understand linearization process when strain energy density is written in terms of invariants

What Is Hyperelasticity?

- Hyperelastic material stress-strain relationship derives from a strain energy density function
 - Stress is a function of total strain (independent of history)
 - Depending on strain energy density, different names are used, such as Mooney-Rivlin, Ogden, Yeoh, or polynomial model
- Generally comes with incompressibility (J = 1)
 - The volume preserves during large deformation
 - Mixed formulation completely incompressible hyperelasticity
 - Penalty formulation nearly incompressible hyperelasticity
- Example: rubber, biological tissues
 - nonlinear elastic, isotropic, incompressible and generally independent of strain rate
- Hypoelastic material: relation is given in terms of stress and strain rates

Strain Energy Density

- We are interested in isotropic materials
 - Material frame indifference: no matter what coordinate system is chosen, the response of the material is identical
 - The components of a deformation tensor depends on coord. system
 - Three invariants of \boldsymbol{C} are independent of coord. system

Invariants of C

$$\begin{split} \mathbf{I}_{1} &= \mathsf{tr}(\mathbf{C}) = \mathbf{C}_{11} + \mathbf{C}_{22} + \mathbf{C}_{33} = \lambda_{1}^{2} + \lambda_{2}^{2} + \lambda_{3}^{2} \\ \mathbf{I}_{2} &= \frac{1}{2} \Big[(\mathsf{tr}\,\mathbf{C})^{2} - \mathsf{tr}(\mathbf{C}^{2}) \Big] = \lambda_{1}^{2} \lambda_{2}^{2} + \lambda_{2}^{2} \lambda_{3}^{2} + \lambda_{3}^{2} \lambda_{1}^{2} \\ \mathbf{I}_{3} &= \mathsf{det}\,\mathbf{C} = \lambda_{1}^{2} \lambda_{2}^{2} \lambda_{3}^{2} \end{split}$$
No deformation
$$\begin{split} \mathbf{I}_{1} &= 3 \\ \mathbf{I}_{2} &= 3 \\ \mathbf{I}_{3} &= 1 \\ \end{split}$$

- In order to be material frame indifferent, material properties must be expressed using invariants
- For incompressibility, $I_3 = 1$

Strain Energy Density cont.

- Strain Energy Density Function
 - Must be zero when C = 1, i.e., $\lambda_1 = \lambda_2 = \lambda_3 = 1$

$$W(I_1, I_2, I_3) = \sum_{m+n+k=1}^{\infty} A_{mnk}(I_1 - 3)^m (I_2 - 3)^n (I_3 - 1)^k$$

- For incompressible material

$$W(\mathbf{I}_1,\mathbf{I}_2) = \sum_{m+n=1}^{\infty} A_{mn}(\mathbf{I}_1 - 3)^m (\mathbf{I}_2 - 3)^n$$

- Ex: Neo-Hookean model

$$W(I_1) = A_{10}(I_1 - 3)$$
 $A_{10} = \frac{\mu}{2}$

- Mooney-Rivlin model

 $W(I_1, I_2) = A_{10}(I_1 - 3) + A_{01}(I_2 - 3)$

84

...

Strain Energy Density cont.

- Strain Energy Density Function
 - Yeoh model

$$W_1(I_1) = A_{10}(I_1 - 3) + A_{20}(I_1 - 3)^2 + A_{30}(I_1 - 3)^3$$

Initial shear modulus - Ogden model Ν 1 N

$$W_1(\lambda_1,\lambda_2,\lambda_3) = \sum_{i=1}^{n} \frac{\mu_i}{\alpha_i} \left(\lambda_1^{\alpha_i} + \lambda_2^{\alpha_i} + \lambda_3^{\alpha_i} - 3 \right) \qquad \mu = \frac{1}{2} \sum_{i=1}^{n} \alpha_i \mu_i$$

- When N = 1 and a_1 = 1, Neo-Hookean material
- When N = 2, α_1 = 2, and α_2 = -2, Mooney-Rivlin material

85

Example – Neo-Hookean Model

Uniaxial tension with incompressibility

Neo-Hookean

-0.4

-200

-250<mark>*</mark> -0.8

$$\lambda_1 = \lambda \qquad \lambda_2 = \lambda_3 = 1 / \sqrt{\lambda}$$

0.4

0.8

Energy density $W = A_{10}(I_1 - 3) = A_{10}(\lambda_1^2 + \lambda_2^2 + \lambda_3^2 - 3) = A_{10}(\lambda^2 + \frac{2}{\lambda} - 3)$ Nominal stress $\mathsf{P} = \frac{\partial \mathsf{W}}{\partial \lambda} = 2\mathsf{A}_{10}\left(\lambda - \frac{1}{\lambda^2}\right) = \mu\left(1 + \varepsilon - \frac{1}{(1 + \varepsilon)^2}\right)$ Linear elastic -50 Nominal stress -100 -120

> 0 Nominal strain

Example - St. Venant Kirchhoff Material • Show that St. Venant-Kirchhoff material has the following strain energy density $W(E) = \frac{\lambda}{2} [\operatorname{tr}(E)]^{2} + \mu \operatorname{tr}(E^{2})$ $S = \frac{\partial W(E)}{\partial E} = \lambda \operatorname{tr}(E) \frac{\partial \operatorname{tr}(E)}{\partial E} + \mu \frac{\partial \operatorname{tr}(E^{2})}{\partial E}$ • First term $\operatorname{tr}(E) = 1 : E \qquad \frac{\partial \operatorname{tr}(E)}{\partial E} = 1$ $\lambda \operatorname{tr}(E) \frac{\partial \operatorname{tr}(E)}{\partial E} = \lambda \mathbf{1}(\mathbf{1} : E) = \lambda(\mathbf{1} \otimes \mathbf{1}) : E$ • Second term $\partial E.E.$

$$\frac{\partial E_{ij}E_{ji}}{\partial E_{kl}} = \delta_{ik}\delta_{jl}E_{ji} + E_{ij}\delta_{jk}\delta_{il} = E_{lk} + E_{lk} = 2E_{lk}$$

87

Example - St. Venant Kirchhoff Material cont.

Therefore

$$S = \lambda tr(E) \frac{\partial tr(E)}{\partial E} + \mu \frac{\partial tr(E^2)}{\partial E}$$
$$= \lambda (1 \otimes 1) : E + 2\mu E$$
$$= \left[\lambda (1 \otimes 1) + 2\mu I \right] : E$$
$$D$$

Nearly Incompressible Hyperelasticity

- Incompressible material
 - Cannot calculate stress from strain. Why?
- Nearly incompressible material
 - Many material show nearly incompressible behavior
 - We can use the bulk modulus to model it
- Using I₁ and I₂ enough for incompressibility?
 - No, \mathbf{I}_1 and \mathbf{I}_2 actually vary under hydrostatic deformation
 - We will use reduced invariants: J_1 , J_2 , and J_3

$$J_1 = I_1 I_3^{-1/3}$$
 $J_2 = I_2 I_3^{-2/3}$ $J_3 = J = I_3^{1/2}$

• Will J_1 and J_2 be constant under dilatation?

89

Locking

- What is locking
 - Elements do not want to deform even if forces are applied
 - Locking is one of the most common modes of failure in NL analysis
 - It is very difficult to find and solutions show strange behaviors

• Types of locking

- Shear locking: shell or beam elements under transverse loading
- Volumetric locking: large elastic and plastic deformation
- Why does locking occur?
 - Incompressible sphere under hydrostatic pressure

Penalty Method

- Instead of incompressibility, the material is assumed to be nearly incompressible
- This is closer to actual observation
- Use a large bulk modulus (penalty parameter) so that a small volume change causes a large pressure change
- Large penalty term makes the stiffness matrix ill-conditioned
- Ill-conditioned matrix often yields excessive deformation
- Temporarily reduce the penalty term in the stiffness calculation
- Stress calculation use the penalty term as it is

 $\begin{array}{|c|c|c|c|c|} \hline \textbf{Example - Hydrostatic Tension (Dilatation)} \\ \begin{cases} x_1 = \alpha X_1 \\ x_2 = \alpha X_2 \\ x_3 = \alpha X_3 \end{cases} \quad \textbf{F} = \begin{bmatrix} \alpha & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \alpha \end{bmatrix} \quad \textbf{C} = \begin{bmatrix} \alpha^2 & 0 & 0 \\ 0 & \alpha^2 & 0 \\ 0 & 0 & \alpha^2 \end{bmatrix} \\ \bullet \quad \textbf{Invariants} \\ I_1 = 3\alpha^2 \quad I_2 = 3\alpha^4 \quad I_3 = \alpha^6 \qquad I_1 \text{ and } I_2 \text{ are not constant} \\ \bullet \quad \textbf{Reduced invariants} \\ J_1 = I_1 I_3^{-1/3} = 3 \\ J_2 = I_2 I_3^{-2/3} = 3 \\ J_3 = I_3^{1/2} = \alpha^3 \end{array} \quad J_1 \text{ and } J_2 \text{ are constant}$

Strain Energy Density

Using reduced invariants

 $W(J_1, J_2, J_3) = W_D(J_1, J_2) + W_H(J_3)$

- $W_D(J_1, J_2)$: Distortional strain energy density
- $W_H(J_3)$: Dilatational strain energy density
- The second terms is related to nearly incompressible behavior

$$W_{H}(J_{3}) = \frac{K}{2}(J_{3} - 1)^{2}$$

- K: bulk modulus = $\lambda + \frac{2}{3}\mu$ for linear elastic material

Abaqus:
$$W_{H}(J_{3}) = \frac{1}{2D}(J_{3} - 1)^{2}$$

Example

- Show $I_{1,E} = 21$, $I_{2,E} = 2(I_1 1 C)$, $I_{3,E} = 2I_3C^{-1}$
- Let $\overline{I}_1 = tr(C), \quad \overline{I}_2 = \frac{1}{2}tr(CC), \quad \overline{I}_3 = \frac{1}{3}tr(CCC)$
- Then $I_1 = \overline{I_1}$, $I_2 = \frac{1}{2}\overline{I_1}^2 \overline{I_2}$, $I_3 = \overline{I_3} + \frac{1}{6}\overline{I_1}^3 \overline{I_1}\overline{I_2}$
- Derivatives

$$\frac{\partial \overline{\mathbf{I}}_{1}}{\partial C_{ij}} = \delta_{ij}, \quad \frac{\partial \overline{\mathbf{I}}_{2}}{\partial C_{ij}} = C_{ji}, \quad \frac{\partial \overline{\mathbf{I}}_{3}}{\partial C_{ij}} = C_{jk}C_{ki}$$

$$\frac{\partial I_1}{\partial C_{ij}} = \delta_{ij}, \quad \frac{\partial I_2}{\partial C_{ij}} = I_1 \delta_{ij} - C_{ji}, \quad \frac{\partial I_3}{\partial C_{ij}} = I_3 C_{ji}^{-1}$$

and

$$\frac{\partial}{\partial \boldsymbol{C}} = 2 \frac{\partial}{\partial \boldsymbol{E}}$$

Mixed Formulation

- Using bulk modulus often causes instability
 - Selectively reduced integration (Full integration for deviatoric part, reduced integration for dilatation part)
- Mixed formulation: Independent treatment of pressure

$$W_{\!H}(J_3,p)=p(J_3-1)$$

- Pressure p is additional unknown (pure incompressible material)
- Advantage: No numerical instability
- Disadvantage: system matrix is not positive definite
- Perturbed Lagrangian formulation

$$W_{H}(J_{3},p) = p(J_{3}-1) - \frac{1}{2K}p^{2}$$

- Second term make the material nearly incompressible and the system matrix positive definite

Example - Simple Shear

Example - Simple Shear cont. $J_{1} = I_{1}I_{3}^{-1/3} = 4$ $J_{1,E} = I_{1,E} - \frac{4}{3}I_{3,E} = \frac{2}{3}\begin{bmatrix} -5 & 4 & 0 \\ 4 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ $J_{2} = I_{2}I_{3}^{-2/3} = 4$ $J_{3} = I_{3}^{-1/2} = 1$ $J_{2,E} = I_{2,E} - \frac{8}{3}I_{3,E} = \frac{2}{3}\begin{bmatrix} -7 & 5 & 0 \\ 5 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $S = A_{10}J_{1,E} + A_{01}J_{2,E} + K(J_{3} - 1)J_{3,E}$ $= \frac{2}{3}\begin{bmatrix} -5A_{10} - 7A_{01} & 4A_{10} + 5A_{01} & 0 \\ 4A_{10} + 5A_{01} & -A_{10} - 2A_{01} & 0 \\ 0 & 0 & -A_{10} + A_{01} \end{bmatrix}$ Note: S_{11} , S_{22} and S_{33} are not zero

Stress Calculation Algorithm

• Given:
$$\{E\} = \{E_{11}, E_{22}, E_{33}, E_{12}, E_{23}, E_{13}\}^T, \{p\}, (A_{10}, A_{01})$$

 $\{1\} = \{1 \ 1 \ 1 \ 0 \ 0 \ 0\}^T \quad \{C\} = 2\{E\} + \{1\}$
 $I_1 = C_1 + C_2 + C_3$
 $I_2 = C_1C_2 + C_1C_3 + C_2C_3 - C_4C_4 - C_5C_5 - C_6C_6$
 $I_3 = (C_1C_2 - C_4C_4)C_3 + (C_4C_6 - C_1C_5)C_5 + (C_4C_5 - C_2C_6)C_6$
 $\{I_{1,E}\} = 2\{1 \ 1 \ 1 \ 0\}$
 $\{I_{2,E}\} = 2\{C_2 + C_3 \ C_3 + C_1 \ C_1 + C_2 \ -C_4 \ -C_5 \ -C_6\}$
 $\{I_{3,E}\} = 2\{C_2C_3 - C_5^2 \ C_3C_1 - C_6^2 \ C_1C_2 - C_4^2 \ C_5C_6 - C_3C_4 \ C_6C_4 - C_1C_5 \ C_4C_5 - C_2C_6\}$
 $\{J_{1,E}\} = I_3^{-1/3}\{I_{1,E}\} - \frac{1}{3}I_1I_3^{-4/3}\{I_{3,E}\}$
 $\{J_{2,E}\} = I_3^{-2/3}\{I_{2,E}\} - \frac{2}{3}I_2I_3^{-5/3}\{I_{3,E}\}$
 $\{J_{3,E}\} = \frac{1}{2}I_3^{-1/2}\{I_{3,E}\},$
For penalty method, use
 $\{S\} = A_{10}\{J_{1,E}\} + A_{01}\{J_{2,E}\} + p\{J_{3,E}\}$

Linearization (Penalty Method)

Stress increment

$$\Delta \mathbf{S} = \mathbf{W}_{\mathbf{E},\mathbf{E}} : \Delta \mathbf{E} = \mathbf{D} : \Delta \mathbf{E}$$

Material stiffness

$$\mathbf{D} = \frac{\partial \mathbf{S}}{\partial \mathbf{E}} = \mathbf{A}_{10} \mathbf{J}_{1,\text{EE}} + \mathbf{A}_{01} \mathbf{J}_{2,\text{EE}} + \mathbf{K} (\mathbf{J}_3 - 1) \mathbf{J}_{3,\text{EE}} + \mathbf{K} \mathbf{J}_{3,\text{E}} \otimes \mathbf{J}_{3,\text{E}}$$

• Linearized energy form

$$a^{\star}(\mathbf{u}; \Delta \mathbf{u}, \overline{\mathbf{u}}) = \iint_{\Omega_0} \left[\overline{\mathbf{E}} : \mathbf{D} : \Delta \mathbf{E} + \mathbf{S} : \Delta \overline{\mathbf{E}} \right] d\Omega$$

103

Linearization cont.

Second-order derivatives of reduced invariants

$$\begin{split} J_{1,EE} &= I_{1,EE} I_{3}^{-\frac{1}{3}} - \frac{1}{3} I_{3}^{-\frac{4}{3}} (I_{1,E} \otimes I_{3,E} + I_{3,E} \otimes I_{1,E}) + \frac{4}{9} I_{1} I_{3}^{-\frac{7}{3}} I_{3,E} \otimes I_{3,E} - \frac{1}{3} I_{1} I_{3}^{-\frac{4}{3}} I_{3,EE} \\ J_{2,EE} &= I_{2,EE} I_{3}^{-\frac{2}{3}} - \frac{2}{3} I_{3}^{-\frac{5}{3}} (I_{2,E} \otimes I_{3,E} + I_{3,E} \otimes I_{2,E}) + \frac{10}{9} I_{2} I_{3}^{-\frac{8}{3}} I_{3,E} \otimes I_{3,E} - \frac{2}{3} I_{2} I_{3}^{-\frac{5}{3}} I_{3,EE} \\ J_{3,EE} &= -\frac{1}{4} I_{3}^{-\frac{3}{2}} I_{3,E} \otimes I_{3,E} + \frac{1}{2} I_{3}^{-\frac{1}{2}} I_{3,EE} \\ I_{1,EE} &= 0 \\ I_{2,EE} &= 41 \otimes 1 - I \\ I_{3,EE} &= 4 I_{3} C^{-1} \otimes C^{-1} - I_{3} C^{-1} I C^{-1} \end{split}$$

MATLAB Function Mooney

• Calculates **S** and **D** for a given deformation gradient

```
2nd PK stress and material stiffness for Mooney-Rivlin material
9
function [Stress D] = Mooney(F, A10, A01, K, ltan)
% Inputs:
00
 F = Deformation gradient [3x3]
 A10, A01, K = Material constants
90
 ltan = 0 Calculate stress alone;
          1 Calculate stress and material stiffness
%
% Outputs:
 Stress = 2nd PK stress [S11, S22, S33, S12, S23, S13];
2
 D = Material stiffness [6x6]
00
2
```

105

Summary

- Hyperelastic material: strain energy density exists with incompressible constraint
- In order to be material frame indifferent, material properties must be expressed using invariants
- Numerical instability (volumetric locking) can occur when large bulk modulus is used for incompressibility
- Mixed formulation is used for purely incompressibility (additional pressure variable, non-PD tangent stiffness)
- Perturbed Lagrangian formulation for nearly incompressibility (reduced integration for pressure term)

Section 3.6 Finite Element Formulation for Nonlinear Elasticity

Voigt Notation

- We will use the Voigt notation because the tensor notation is not convenient for implementation
 - 2nd-order tensor \Rightarrow vector
 - 4th-order tensor \Rightarrow matrix
- Stress and strain vectors (Voigt notation)

$$\{\mathbf{S}\} = \{S_{11} \ S_{22} \ S_{12}\}^{\mathsf{T}}$$

$$\{\mathbf{E}\} = \{\mathbf{E}_{11} \ \mathbf{E}_{22} \ 2\mathbf{E}_{12}\}^{\mathsf{T}}$$

- Since stress and strain are symmetric, we don't need 21 component

Same for all elements

 $N_2 = \frac{1}{4}(1 + s)(1 - t)$

 $N_3 = \frac{1}{4}(1 + s)(1 + t)$

 $N_4 = \frac{1}{4}(1-s)(1+t)$

Mapping depends of geometry

Green-Lagrange Strain

• Green-Lagrange strain

$$\{\mathbf{E}\} = \begin{cases} \mathsf{E}_{11} \\ \mathsf{E}_{22} \\ \mathsf{2}\mathsf{E}_{12} \end{cases} = \begin{cases} \mathsf{u}_{1,1} + \frac{1}{2}(\mathsf{u}_{1,1}\mathsf{u}_{1,1} + \mathsf{u}_{2,1}\mathsf{u}_{2,1}) \\ \mathsf{u}_{2,2} + \frac{1}{2}(\mathsf{u}_{1,2}\mathsf{u}_{2,1} + \mathsf{u}_{2,2}\mathsf{u}_{2,2}) \\ \mathsf{u}_{1,2} + \mathsf{u}_{2,1} + \mathsf{u}_{1,2}\mathsf{u}_{1,1} + \mathsf{u}_{2,1}\mathsf{u}_{2,2} \end{cases}$$

- Due to nonlinearity, ${E} \neq [B]{d}$

- For St. Venant-Kirchhoff material, {S} = [D]{E}

$$\begin{bmatrix} \mathbf{D} \end{bmatrix} = \begin{bmatrix} \lambda + 2\mu & \lambda & 0 \\ \lambda & \lambda + 2\mu & 0 \\ 0 & 0 & \mu \end{bmatrix}$$

Variational Equation

Energy form

$$\begin{split} \mathbf{a}(\mathbf{u}, \overline{\mathbf{u}}) &= \iint_{\Omega_0} \mathbf{S} : \overline{\mathbf{E}} \, \mathrm{d}\Omega \\ &\approx \{\overline{\mathbf{d}}\}^{\mathsf{T}} \iint_{\Omega_0} [\mathbf{B}_{\mathsf{N}}]^{\mathsf{T}} \{\mathbf{S}\} \, \mathrm{d}\Omega \\ &\equiv \{\overline{\mathbf{d}}\}^{\mathsf{T}} \{\mathbf{F}^{\mathsf{int}}\} \end{split}$$

Load form

$$\ell(\overline{\mathbf{u}}) = \iint_{\Omega_0} \overline{\mathbf{u}}^{\mathsf{T}} \mathbf{f}^{\mathsf{b}} \, d\Omega + \int_{\Gamma_0^{\mathsf{S}}} \overline{\mathbf{u}}^{\mathsf{T}} \mathbf{t} \, d\Gamma$$
$$\approx \sum_{\mathsf{I}=1}^{\mathsf{N}_{\mathsf{e}}} \overline{\mathbf{u}}_{\mathsf{I}}^{\mathsf{T}} \left\{ \iint_{\Omega_0} \mathsf{N}_{\mathsf{I}}(\mathbf{s}) \mathbf{f}^{\mathsf{b}} \, d\Omega + \int_{\Gamma_0^{\mathsf{S}}} \mathsf{N}_{\mathsf{I}}(\mathbf{s}) \mathbf{t} \, d\Gamma$$
$$\equiv \{\overline{\mathbf{d}}\}^{\mathsf{T}} \{\mathbf{F}^{\mathsf{ext}}\}$$

Residual

$$\{\overline{\mathbf{d}}\}^{\mathsf{T}}\{\mathbf{F}^{\mathsf{int}}(\mathbf{d})\} = \{\overline{\mathbf{d}}\}^{\mathsf{T}}\{\mathbf{F}^{\mathsf{ext}}\}, \quad \forall \{\overline{\mathbf{d}}\} \in \mathbb{Z}_{\mathsf{h}}$$

$$\begin{aligned} \textbf{Linearization} - \textbf{Tangent Stiffness} \\ \bullet \textbf{ Incremental strain } & \{\Delta \textbf{E}\} = [\textbf{B}_N]\{\Delta d\} \\ \bullet \textbf{ Linearization} \\ & \iint_{\Omega_0} \overline{\textbf{E}} : \textbf{D} : \Delta \textbf{E} \, d\Omega = \{\overline{\textbf{d}}\}^T \Big[\iint_{\Omega_0} [\textbf{B}_N]^T [\textbf{D}] [\textbf{B}_N] \, d\Omega \Big] \{\Delta d\} \\ & \iint_{\Omega_0} \textbf{S} : \Delta \overline{\textbf{E}} \, d\Omega = \{\overline{\textbf{d}}\}^T \Big[\iint_{\Omega_0} [\textbf{B}_G]^T [\boldsymbol{\Sigma}] [\textbf{B}_G] \, d\Omega \Big] \{\Delta d\} \\ & \iint_{\Omega_0} \textbf{S} : \Delta \overline{\textbf{E}} \, d\Omega = \{\overline{\textbf{d}}\}^T \Big[\iint_{\Omega_0} [\textbf{B}_G]^T [\boldsymbol{\Sigma}] [\textbf{B}_G] \, d\Omega \Big] \{\Delta d\} \\ & \left[[\boldsymbol{\Sigma}] = \begin{bmatrix} \textbf{S}_{11} & \textbf{S}_{12} & 0 & 0 \\ \textbf{S}_{12} & \textbf{S}_{22} & 0 & 0 \\ 0 & 0 & \textbf{S}_{11} & \textbf{S}_{12} \\ 0 & 0 & \textbf{S}_{12} & \textbf{S}_{22} \end{bmatrix} \\ & [\textbf{B}_G] = \begin{bmatrix} \textbf{N}_{1,1} & 0 & \textbf{N}_{2,1} & 0 & \textbf{N}_{3,1} & 0 & \textbf{N}_{4,1} & 0 \\ \textbf{N}_{1,2} & 0 & \textbf{N}_{2,2} & 0 & \textbf{N}_{3,2} & 0 & \textbf{N}_{4,2} \end{bmatrix} \\ & \textbf{115} \end{aligned}$$

Linearization - Tangent Stiffness

Tangent stiffness

$$[\mathbf{K}_{\mathsf{T}}] = \iint_{\Omega_0} \left[[\mathbf{B}_{\mathsf{N}}]^{\mathsf{T}} [\mathbf{D}] [\mathbf{B}_{\mathsf{N}}] + [\mathbf{B}_{\mathcal{G}}]^{\mathsf{T}} [\Sigma] [\mathbf{B}_{\mathcal{G}}] \right] d\Omega_0$$

• Discrete incremental equation (N-R iteration)

$$\{\overline{\mathbf{d}}\}^{\mathsf{T}}[\mathbf{K}_{\mathsf{T}}]\{\Delta \mathbf{d}\} = \{\overline{\mathbf{d}}\}^{\mathsf{T}}\{\mathbf{F}^{ext} - \mathbf{F}^{int}\}, \quad \forall \{\overline{\mathbf{d}}\} \in \mathbb{Z}_{\mathsf{h}}$$

- $[K_{\mathsf{T}}]$ changes according to stress and strain
- Solved iteratively until the residual term vanishes

Summary

- For elastic material, the variational equation can be obtained from the principle of minimum potential energy
- St. Venant-Kirchhoff material has linear relationship between 2nd P-K stress and G-L strain
- In TL, nonlinearity comes from nonlinear straindisplacement relation
- In UL, nonlinearity comes from constitutive relation and unknown current domain (Jacobian of deformation gradient)
- TL and UL are mathematically equivalent, but have different reference frames
- TL and UL have different interpretation of constitutive relation.

Section 3.7 MATLAB Code for Hyperelastic Material Model

HYPER3D.m

- Building the tangent stiffness matrix, [K], and the residual force vector, {R}, for hyperelastic material
- Input variables for HYPER3D.m

Variable	Array size	Meaning
MID	Integer	Material Identification No. (3) (Not used)
PROP	(3,1)	Material properties (A10, A01, K)
UPDATE	Logical variable	If true, save stress values
LTAN	Logical variable	If true, calculate the global stiffness matrix
NE	Integer	Total number of elements
NDOF	Integer	Dimension of problem (3)
XYZ	(3,NNODE)	Coordinates of all nodes
LE	(8,NE)	Element connectivity

```
function HYPER3D(MID, PROP, UPDATE, LTAN, NE, NDOF, XYZ, LE)
8 MAIN PROGRAM COMPUTING GLOBAL STIFFNESS MATRIX AND RESIDUAL FORCE FOR
% HYPERELASTIC MATERIAL MODELS
؞
88
 global DISPTD FORCE GKF SIGMA
 % Integration points and weights
 XG=[-0.57735026918963D0, 0.57735026918963D0];
 WGT=[1.00000000000000, 1.0000000000000];
 % Index for history variables (each integration pt)
 INTN=0;
 %LOOP OVER ELEMENTS, THIS IS MAIN LOOP TO COMPUTE K AND F
 for IE=1:NE
   % Nodal coordinates and incremental displacements
   ELXY=XYZ(LE(IE,:),:);
   % Local to global mapping
   IDOF=zeros(1,24);
   for I=1:8
     II=(I-1) *NDOF+1;
     IDOF(II:II+2) = (LE(IE, I) -1) *NDOF+1: (LE(IE, I) -1) *NDOF+3;
   end
   DSP=DISPTD(IDOF);
   DSP=reshape(DSP,NDOF,8);
%
   %LOOP OVER INTEGRATION POINTS
   for LX=1:2, for LY=1:2, for LZ=1:2
    E1=XG(LX); E2=XG(LY); E3=XG(LZ);
     INTN = INTN + 1;
     % Determinant and shape function derivatives
     [~, SHPD, DET] = SHAPEL([E1 E2 E3], ELXY);
     FAC=WGT(LX)*WGT(LY)*WGT(LZ)*DET;
```

```
% Deformation gradient
      F=DSP*SHPD' + eye(3);
      % Computer stress and tangent stiffness
      [STRESS DTAN] = Mooney(F, PROP(1), PROP(2), PROP(3), LTAN);
      2
      % Store stress into the global array
      if UPDATE
        SIGMA(:,INTN)=STRESS;
       continue;
      end
      8
      % Add residual force and tangent stiffness matrix
      BM=zeros(6,24); BG=zeros(9,24);
      for I=1:8
        COL=(I-1)*3+1:(I-1)*3+3;
        BM(:,COL) = [SHPD(1,I) *F(1,1) SHPD(1,I) *F(2,1) SHPD(1,I) *F(3,1);
                   SHPD(2,I)*F(1,2) SHPD(2,I)*F(2,2) SHPD(2,I)*F(3,2);
                   SHPD(3,I)*F(1,3) SHPD(3,I)*F(2,3) SHPD(3,I)*F(3,3);
                   SHPD(1,I)*F(1,2)+SHPD(2,I)*F(1,1)
SHPD(1,I)*F(2,2)+SHPD(2,I)*F(2,1) SHPD(1,I)*F(3,2)+SHPD(2,I)*F(3,1);
                   SHPD(2,I)*F(1,3)+SHPD(3,I)*F(1,2)
SHPD(2,I)*F(2,3)+SHPD(3,I)*F(2,2) SHPD(2,I)*F(3,3)+SHPD(3,I)*F(3,2);
                   SHPD(1,I)*F(1,3)+SHPD(3,I)*F(1,1)
SHPD(1,I)*F(2,3)+SHPD(3,I)*F(2,1) SHPD(1,I)*F(3,3)+SHPD(3,I)*F(3,1)];
        BG(:,COL) = [SHPD(1,I) 0
                                        0;
                   SHPD(2,I) 0
                                        0;
                   SHPD(3,I) 0
                                        0;
                   0
                             SHPD(1,I) 0;
                   0
                             SHPD(2,I) 0;
                   0
                             SHPD(3,I) 0;
                   0
                             0
                                        SHPD(1,I);
                   0
                             0
                                        SHPD(2,I);
                   0
                             0
                                       SHPD(3,I)];
      end
```

%

```
% Residual forces
      FORCE(IDOF) = FORCE(IDOF) - FAC*BM'*STRESS;
      8
      % Tangent stiffness
      if LTAN
        SIG=[STRESS(1) STRESS(4) STRESS(6);
             STRESS(4) STRESS(2) STRESS(5);
             STRESS(6) STRESS(5) STRESS(3)];
        SHEAD=zeros(9);
        SHEAD(1:3,1:3)=SIG;
        SHEAD(4:6,4:6)=SIG;
        SHEAD(7:9,7:9)=SIG;
        EKF = BM'*DTAN*BM + BG'*SHEAD*BG;
        GKF(IDOF, IDOF) = GKF(IDOF, IDOF) + FAC*EKF;
      end
    end; end; end;
  end
end
```


Hyperelastic Material Analysis Using ABAQUS

^HEADING	^MATERIAL, NAME=MOONEY
- Incompressible hyperelasticity (Mooney-	*HYPERELASTIC, MOONEY-RIVLIN
Rivlin) Uniaxial tension	80., 20.,
*NODE NSET=ALL	*STEP NLGEOM INC=20
1	
-, 21	*STATIC NIDECT
۲,I. כ 1 1	1.20
3,1.,1.,	
4,0.,1.,	^BOUNDARY,OP=NEW
5,0.,0.,1.	FACE1,3
6,1.,0.,1.	FACE3,2
7,1.,1.,1.	FACE6,1
8.0.1.1.	FACE4,1,1,5.
*NSET,NSET=FACE1	*EL PRINT,F=1
1,2,3,4	S,
*NSET,NSET=FACE3	E,
1,2,5,6	*NODE PRINT,F=1
*NSET_NSET=FACE4	URF
2367	*OUTPUT FIFLD FREQ=1
*NSET NSET=FACE6	*ELEMENT OUTPUT
4185	SE
112245470	
SULLD SECTION, ELSET=ONE,	
MATERIAL= MOONEY	*END STEP 126
	120

Hyperelastic Material Analysis Using ABAQUS

- Analytical solution procedure
 - Gradually increase the principal stretch λ from 1 to 6
 - Deformation gradient

$$\mathbf{F} = \begin{bmatrix} \lambda & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & 1/\sqrt{\lambda} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & 1/\sqrt{\lambda} \end{bmatrix}$$

- Calculate $J_{1,E}$ and $J_{2,E}$
- Calculate 2nd P-K stress

$$\boldsymbol{\mathsf{S}} = \boldsymbol{\mathsf{A}}_{10}\boldsymbol{J}_{1,\mathsf{E}} + \boldsymbol{\mathsf{A}}_{01}\boldsymbol{J}_{2,\mathsf{E}}$$

- Calculate Cauchy stress

$$\boldsymbol{\sigma} = \frac{1}{J} \boldsymbol{F} \cdot \boldsymbol{S} \cdot \boldsymbol{F}^{\mathsf{T}}$$

- Remove the hydrostatic component of stress

$$\sigma_{11} = \sigma_{11} - \sigma_{22}$$

127

Hyperelastic Material Analysis Using ABAQUS

• Comparison with analytical stress vs. numerical stress

Section 3.9 Fitting Hyperelastic Material Parameters from Test Data

Elastomer Test Procedures

- Elastomer tests
 - simple tension, simple compression, equi-biaxial tension, simple shear, pure shear, and volumetric compression

Data Preparation

- Need enough number of independent experimental data
 - No rank deficiency for curve fitting algorithm
- All tests measure principal stress and principle stretch

Experiment Type	Stretch	Stress
Uniaxial tension	Stretch ratio $\lambda = L/L_0$	Nominal stress T ^E = F/A ₀
Equi-biaxial tension	Stretch ratio $\lambda = L/L_0$ in y-direction	Nominal stress T ^E = F/A ₀ in y-direction
Pure shear test	Stretch ratio $\lambda = L/L_0$	Nominal stress T ^E = F/A ₀
Volumetric test	Compression ratio $\lambda = L/L_0$	Pressure T ^E = F/A ₀

$$\begin{aligned} \textbf{Data Preparation cont.} \\ \cdot & \text{Uni-axial test } \lambda_1 = \lambda, \quad \lambda_2 = \lambda_3 = 1/\sqrt{\lambda} \\ & T = \frac{\partial U}{\partial \lambda} = 2(1 - \lambda^{-3})(A_{10}\lambda + A_{01}) \\ & T(A_{10}, A_{01}, \lambda) = \left\{ \textbf{x} \right\}^T \{ \textbf{b} \} = \left[2(\lambda - \lambda^{-2}) \quad 2(1 - \lambda^{-3}) \right] \left\{ \begin{matrix} A_{10} \\ A_{01} \end{matrix} \right\} \\ \cdot & \text{Equi-biaxial test } \lambda_1 = \lambda_2 = \lambda, \quad \lambda_3 = 1/\lambda^2 \\ & T = \frac{1}{2} \frac{\partial U}{\partial \lambda} = 2(\lambda - \lambda^{-5})(A_{10} + \lambda^2 A_{01}) \\ \cdot & \text{Pure shear test } \lambda_1 = \lambda, \quad \lambda_2 = 1, \quad \lambda_3 = 1/\lambda \\ & T = \frac{\partial U}{\partial \lambda} = 2(\lambda - \lambda^{-3})(A_{10} + A_{01}) \end{aligned}$$

Data Preparation cont.

Data Preparation

Туј	pe	1	1	1	•••	4	4	•••	4
λ	λ_1	λ_2	λ_3	•••	λ_{i}	λ_{i+}	1	•••	λ_{NDT}
Τ ^Ε	T_1^E	T_2^E	T_3^E	•••	T_i^E	T_{i+2}^{E}	1	•••	T_{NDT}^{E}

• For Mooney-Rivlin material model, nominal stress is a linear function of material parameters (A_{10}, A_{01})

Curve Fitting cont.

• Minimize error(square)

$$\{ \mathbf{e} \}^{\mathsf{T}} \{ \mathbf{e} \} = \{ \mathbf{T}^{\mathsf{E}} - \mathbf{T} \}^{\mathsf{T}} \{ \mathbf{T}^{\mathsf{E}} - \mathbf{T} \}$$

= $\{ \mathbf{T}^{\mathsf{E}} - \mathbf{X} \mathbf{b} \}^{\mathsf{T}} \{ \mathbf{T}^{\mathsf{E}} - \mathbf{X} \mathbf{b} \}$
= $\{ \mathbf{T}^{\mathsf{E}} \}^{\mathsf{T}} \{ \mathbf{T}^{\mathsf{E}} \} - 2 \{ \mathbf{b} \}^{\mathsf{T}} [\mathbf{X}]^{\mathsf{T}} \{ \mathbf{T}^{\mathsf{E}} \} + \{ \mathbf{b} \}^{\mathsf{T}} [\mathbf{X}]^{\mathsf{T}} [\mathbf{X}] \{ \mathbf{b} \}$

• Minimization \rightarrow Linear regression equation

$$[\mathbf{X}]^{\mathsf{T}}[\mathbf{X}]\{\mathbf{b}\} = [\mathbf{X}]^{\mathsf{T}}\{\mathbf{T}^{\mathsf{E}}\}$$

